langchain/libs/community/langchain_community/retrievers/bedrock.py
Bagatur ed58eeb9c5
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion:

```
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
```

Moved the following to core
```
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
```

See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 13:53:30 -08:00

125 lines
4.5 KiB
Python

from typing import Any, Dict, List, Optional
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import BaseModel, root_validator
from langchain_core.retrievers import BaseRetriever
class VectorSearchConfig(BaseModel, extra="allow"): # type: ignore[call-arg]
numberOfResults: int = 4
class RetrievalConfig(BaseModel, extra="allow"): # type: ignore[call-arg]
vectorSearchConfiguration: VectorSearchConfig
class AmazonKnowledgeBasesRetriever(BaseRetriever):
"""A retriever class for `Amazon Bedrock Knowledge Bases`.
See https://aws.amazon.com/bedrock/knowledge-bases for more info.
Args:
knowledge_base_id: Knowledge Base ID.
region_name: The aws region e.g., `us-west-2`.
Fallback to AWS_DEFAULT_REGION env variable or region specified in
~/.aws/config.
credentials_profile_name: The name of the profile in the ~/.aws/credentials
or ~/.aws/config files, which has either access keys or role information
specified. If not specified, the default credential profile or, if on an
EC2 instance, credentials from IMDS will be used.
client: boto3 client for bedrock agent runtime.
retrieval_config: Configuration for retrieval.
Example:
.. code-block:: python
from langchain_community.retrievers import AmazonKnowledgeBasesRetriever
retriever = AmazonKnowledgeBasesRetriever(
knowledge_base_id="<knowledge-base-id>",
retrieval_config={
"vectorSearchConfiguration": {
"numberOfResults": 4
}
},
)
"""
knowledge_base_id: str
region_name: Optional[str] = None
credentials_profile_name: Optional[str] = None
endpoint_url: Optional[str] = None
client: Any
retrieval_config: RetrievalConfig
@root_validator(pre=True)
def create_client(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if values.get("client") is not None:
return values
try:
import boto3
from botocore.client import Config
from botocore.exceptions import UnknownServiceError
if values.get("credentials_profile_name"):
session = boto3.Session(profile_name=values["credentials_profile_name"])
else:
# use default credentials
session = boto3.Session()
client_params = {
"config": Config(
connect_timeout=120, read_timeout=120, retries={"max_attempts": 0}
)
}
if values.get("region_name"):
client_params["region_name"] = values["region_name"]
if values.get("endpoint_url"):
client_params["endpoint_url"] = values["endpoint_url"]
values["client"] = session.client("bedrock-agent-runtime", **client_params)
return values
except ImportError:
raise ModuleNotFoundError(
"Could not import boto3 python package. "
"Please install it with `pip install boto3`."
)
except UnknownServiceError as e:
raise ModuleNotFoundError(
"Ensure that you have installed the latest boto3 package "
"that contains the API for `bedrock-runtime-agent`."
) from e
except Exception as e:
raise ValueError(
"Could not load credentials to authenticate with AWS client. "
"Please check that credentials in the specified "
"profile name are valid."
) from e
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
response = self.client.retrieve(
retrievalQuery={"text": query.strip()},
knowledgeBaseId=self.knowledge_base_id,
retrievalConfiguration=self.retrieval_config.dict(),
)
results = response["retrievalResults"]
documents = []
for result in results:
documents.append(
Document(
page_content=result["content"]["text"],
metadata={
"location": result["location"],
"score": result["score"] if "score" in result else 0,
},
)
)
return documents