mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
25fbe356b4
This PR upgrades community to a recent version of mypy. It inserts type: ignore on all existing failures.
89 lines
3.2 KiB
Python
89 lines
3.2 KiB
Python
"""Test Anthropic API wrapper."""
|
|
from typing import List
|
|
|
|
import pytest
|
|
from langchain_core.callbacks import CallbackManager
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
|
from langchain_core.outputs import ChatGeneration, LLMResult
|
|
|
|
from langchain_community.chat_models.anthropic import (
|
|
ChatAnthropic,
|
|
)
|
|
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_anthropic_call() -> None:
|
|
"""Test valid call to anthropic."""
|
|
chat = ChatAnthropic(model="test") # type: ignore[call-arg]
|
|
message = HumanMessage(content="Hello")
|
|
response = chat.invoke([message])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_anthropic_generate() -> None:
|
|
"""Test generate method of anthropic."""
|
|
chat = ChatAnthropic(model="test") # type: ignore[call-arg]
|
|
chat_messages: List[List[BaseMessage]] = [
|
|
[HumanMessage(content="How many toes do dogs have?")]
|
|
]
|
|
messages_copy = [messages.copy() for messages in chat_messages]
|
|
result: LLMResult = chat.generate(chat_messages)
|
|
assert isinstance(result, LLMResult)
|
|
for response in result.generations[0]:
|
|
assert isinstance(response, ChatGeneration)
|
|
assert isinstance(response.text, str)
|
|
assert response.text == response.message.content
|
|
assert chat_messages == messages_copy
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_anthropic_streaming() -> None:
|
|
"""Test streaming tokens from anthropic."""
|
|
chat = ChatAnthropic(model="test", streaming=True) # type: ignore[call-arg]
|
|
message = HumanMessage(content="Hello")
|
|
response = chat.invoke([message])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_anthropic_streaming_callback() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = ChatAnthropic( # type: ignore[call-arg]
|
|
model="test",
|
|
streaming=True,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Write me a sentence with 10 words.")
|
|
chat.invoke([message])
|
|
assert callback_handler.llm_streams > 1
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_anthropic_async_streaming_callback() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = ChatAnthropic( # type: ignore[call-arg]
|
|
model="test",
|
|
streaming=True,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
chat_messages: List[BaseMessage] = [
|
|
HumanMessage(content="How many toes do dogs have?")
|
|
]
|
|
result: LLMResult = await chat.agenerate([chat_messages])
|
|
assert callback_handler.llm_streams > 1
|
|
assert isinstance(result, LLMResult)
|
|
for response in result.generations[0]:
|
|
assert isinstance(response, ChatGeneration)
|
|
assert isinstance(response.text, str)
|
|
assert response.text == response.message.content
|