mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
aea2be5bf3
Adding VoyageAI reranking --------- Co-authored-by: fodizoltan <zoltan@conway.expert> Co-authored-by: Yujie Qian <thomasq0809@gmail.com>
154 lines
5.0 KiB
Python
154 lines
5.0 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
from copy import deepcopy
|
|
from typing import Dict, Optional, Sequence, Union
|
|
|
|
import voyageai # type: ignore
|
|
from langchain_core.callbacks.manager import Callbacks
|
|
from langchain_core.documents import Document
|
|
from langchain_core.documents.compressor import BaseDocumentCompressor
|
|
from langchain_core.pydantic_v1 import SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str
|
|
from voyageai.object import RerankingObject # type: ignore
|
|
|
|
|
|
class VoyageAIRerank(BaseDocumentCompressor):
|
|
"""Document compressor that uses `VoyageAI Rerank API`."""
|
|
|
|
client: voyageai.Client = None
|
|
aclient: voyageai.AsyncClient = None
|
|
"""VoyageAI clients to use for compressing documents."""
|
|
voyage_api_key: Optional[SecretStr] = None
|
|
"""VoyageAI API key. Must be specified directly or via environment variable
|
|
VOYAGE_API_KEY."""
|
|
model: str
|
|
"""Model to use for reranking."""
|
|
top_k: Optional[int] = None
|
|
"""Number of documents to return."""
|
|
truncation: bool = True
|
|
|
|
class Config:
|
|
arbitrary_types_allowed = True
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key exists in environment."""
|
|
voyage_api_key = values.get("voyage_api_key") or os.getenv(
|
|
"VOYAGE_API_KEY", None
|
|
)
|
|
if voyage_api_key:
|
|
api_key_secretstr = convert_to_secret_str(voyage_api_key)
|
|
values["voyage_api_key"] = api_key_secretstr
|
|
|
|
api_key_str = api_key_secretstr.get_secret_value()
|
|
else:
|
|
api_key_str = None
|
|
|
|
values["client"] = voyageai.Client(api_key=api_key_str)
|
|
values["aclient"] = voyageai.AsyncClient(api_key=api_key_str)
|
|
|
|
return values
|
|
|
|
def _rerank(
|
|
self,
|
|
documents: Sequence[Union[str, Document]],
|
|
query: str,
|
|
) -> RerankingObject:
|
|
"""Returns an ordered list of documents ordered by their relevance
|
|
to the provided query.
|
|
|
|
Args:
|
|
query: The query to use for reranking.
|
|
documents: A sequence of documents to rerank.
|
|
"""
|
|
docs = [
|
|
doc.page_content if isinstance(doc, Document) else doc for doc in documents
|
|
]
|
|
return self.client.rerank(
|
|
query=query,
|
|
documents=docs,
|
|
model=self.model,
|
|
top_k=self.top_k,
|
|
truncation=self.truncation,
|
|
)
|
|
|
|
async def _arerank(
|
|
self,
|
|
documents: Sequence[Union[str, Document]],
|
|
query: str,
|
|
) -> RerankingObject:
|
|
"""Returns an ordered list of documents ordered by their relevance
|
|
to the provided query.
|
|
|
|
Args:
|
|
query: The query to use for reranking.
|
|
documents: A sequence of documents to rerank.
|
|
"""
|
|
docs = [
|
|
doc.page_content if isinstance(doc, Document) else doc for doc in documents
|
|
]
|
|
return await self.aclient.rerank(
|
|
query=query,
|
|
documents=docs,
|
|
model=self.model,
|
|
top_k=self.top_k,
|
|
truncation=self.truncation,
|
|
)
|
|
|
|
def compress_documents(
|
|
self,
|
|
documents: Sequence[Document],
|
|
query: str,
|
|
callbacks: Optional[Callbacks] = None,
|
|
) -> Sequence[Document]:
|
|
"""
|
|
Compress documents using VoyageAI's rerank API.
|
|
|
|
Args:
|
|
documents: A sequence of documents to compress.
|
|
query: The query to use for compressing the documents.
|
|
callbacks: Callbacks to run during the compression process.
|
|
|
|
Returns:
|
|
A sequence of compressed documents in relevance_score order.
|
|
"""
|
|
if len(documents) == 0:
|
|
return []
|
|
|
|
compressed = []
|
|
for res in self._rerank(documents, query).results:
|
|
doc = documents[res.index]
|
|
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
|
|
doc_copy.metadata["relevance_score"] = res.relevance_score
|
|
compressed.append(doc_copy)
|
|
return compressed
|
|
|
|
async def acompress_documents(
|
|
self,
|
|
documents: Sequence[Document],
|
|
query: str,
|
|
callbacks: Optional[Callbacks] = None,
|
|
) -> Sequence[Document]:
|
|
"""
|
|
Compress documents using VoyageAI's rerank API.
|
|
|
|
Args:
|
|
documents: A sequence of documents to compress.
|
|
query: The query to use for compressing the documents.
|
|
callbacks: Callbacks to run during the compression process.
|
|
|
|
Returns:
|
|
A sequence of compressed documents in relevance_score order.
|
|
"""
|
|
if len(documents) == 0:
|
|
return []
|
|
|
|
compressed = []
|
|
for res in (await self._arerank(documents, query)).results:
|
|
doc = documents[res.index]
|
|
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
|
|
doc_copy.metadata["relevance_score"] = res.relevance_score
|
|
compressed.append(doc_copy)
|
|
return compressed
|