mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
174 lines
4.7 KiB
Plaintext
174 lines
4.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# GPT4All\n",
|
|
"\n",
|
|
"[GitHub:nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) an ecosystem of open-source chatbots trained on a massive collections of clean assistant data including code, stories and dialogue.\n",
|
|
"\n",
|
|
"This example goes over how to use LangChain to interact with `GPT4All` models."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Note: you may need to restart the kernel to use updated packages.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%pip install gpt4all > /dev/null"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain import PromptTemplate, LLMChain\n",
|
|
"from langchain.llms import GPT4All\n",
|
|
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"template = \"\"\"Question: {question}\n",
|
|
"\n",
|
|
"Answer: Let's think step by step.\"\"\"\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Specify Model\n",
|
|
"\n",
|
|
"To run locally, download a compatible ggml-formatted model. \n",
|
|
" \n",
|
|
"**Download option 1**: The [gpt4all page](https://gpt4all.io/index.html) has a useful `Model Explorer` section:\n",
|
|
"\n",
|
|
"* Select a model of interest\n",
|
|
"* Download using the UI and move the `.bin` to the `local_path` (noted below)\n",
|
|
"\n",
|
|
"For more info, visit https://github.com/nomic-ai/gpt4all.\n",
|
|
"\n",
|
|
"--- \n",
|
|
"\n",
|
|
"**Download option 2**: Uncomment the below block to download a model. \n",
|
|
"\n",
|
|
"* You may want to update `url` to a new version, whih can be browsed using the [gpt4all page](https://gpt4all.io/index.html)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"local_path = (\n",
|
|
" \"./models/ggml-gpt4all-l13b-snoozy.bin\" # replace with your desired local file path\n",
|
|
")\n",
|
|
"\n",
|
|
"# import requests\n",
|
|
"\n",
|
|
"# from pathlib import Path\n",
|
|
"# from tqdm import tqdm\n",
|
|
"\n",
|
|
"# Path(local_path).parent.mkdir(parents=True, exist_ok=True)\n",
|
|
"\n",
|
|
"# # Example model. Check https://github.com/nomic-ai/gpt4all for the latest models.\n",
|
|
"# url = 'http://gpt4all.io/models/ggml-gpt4all-l13b-snoozy.bin'\n",
|
|
"\n",
|
|
"# # send a GET request to the URL to download the file. Stream since it's large\n",
|
|
"# response = requests.get(url, stream=True)\n",
|
|
"\n",
|
|
"# # open the file in binary mode and write the contents of the response to it in chunks\n",
|
|
"# # This is a large file, so be prepared to wait.\n",
|
|
"# with open(local_path, 'wb') as f:\n",
|
|
"# for chunk in tqdm(response.iter_content(chunk_size=8192)):\n",
|
|
"# if chunk:\n",
|
|
"# f.write(chunk)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Callbacks support token-wise streaming\n",
|
|
"callbacks = [StreamingStdOutCallbackHandler()]\n",
|
|
"\n",
|
|
"# Verbose is required to pass to the callback manager\n",
|
|
"llm = GPT4All(model=local_path, callbacks=callbacks, verbose=True)\n",
|
|
"\n",
|
|
"# If you want to use a custom model add the backend parameter\n",
|
|
"# Check https://docs.gpt4all.io/gpt4all_python.html for supported backends\n",
|
|
"llm = GPT4All(model=local_path, backend=\"gptj\", callbacks=callbacks, verbose=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"question = \"What NFL team won the Super Bowl in the year Justin Bieber was born?\"\n",
|
|
"\n",
|
|
"llm_chain.run(question)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.16"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|