mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
50186da0a1
Updating #21137
883 lines
29 KiB
Python
883 lines
29 KiB
Python
"""VectorStore wrapper around a Postgres-TimescaleVector database."""
|
|
from __future__ import annotations
|
|
|
|
import enum
|
|
import logging
|
|
import uuid
|
|
from datetime import timedelta
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
from langchain_community.vectorstores.utils import DistanceStrategy
|
|
|
|
if TYPE_CHECKING:
|
|
from timescale_vector import Predicates
|
|
|
|
|
|
DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
|
|
|
|
ADA_TOKEN_COUNT = 1536
|
|
|
|
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain_store"
|
|
|
|
|
|
class TimescaleVector(VectorStore):
|
|
"""Timescale Postgres vector store
|
|
|
|
To use, you should have the ``timescale_vector`` python package installed.
|
|
|
|
Args:
|
|
service_url: Service url on timescale cloud.
|
|
embedding: Any embedding function implementing
|
|
`langchain.embeddings.base.Embeddings` interface.
|
|
collection_name: The name of the collection to use. (default: langchain_store)
|
|
This will become the table name used for the collection.
|
|
distance_strategy: The distance strategy to use. (default: COSINE)
|
|
pre_delete_collection: If True, will delete the collection if it exists.
|
|
(default: False). Useful for testing.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.vectorstores import TimescaleVector
|
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
|
|
|
SERVICE_URL = "postgres://tsdbadmin:<password>@<id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require"
|
|
COLLECTION_NAME = "state_of_the_union_test"
|
|
embeddings = OpenAIEmbeddings()
|
|
vectorestore = TimescaleVector.from_documents(
|
|
embedding=embeddings,
|
|
documents=docs,
|
|
collection_name=COLLECTION_NAME,
|
|
service_url=SERVICE_URL,
|
|
)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
service_url: str,
|
|
embedding: Embeddings,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
num_dimensions: int = ADA_TOKEN_COUNT,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
pre_delete_collection: bool = False,
|
|
logger: Optional[logging.Logger] = None,
|
|
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
|
time_partition_interval: Optional[timedelta] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
try:
|
|
from timescale_vector import client
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import timescale_vector python package. "
|
|
"Please install it with `pip install timescale-vector`."
|
|
)
|
|
|
|
self.service_url = service_url
|
|
self.embedding = embedding
|
|
self.collection_name = collection_name
|
|
self.num_dimensions = num_dimensions
|
|
self._distance_strategy = distance_strategy
|
|
self.pre_delete_collection = pre_delete_collection
|
|
self.logger = logger or logging.getLogger(__name__)
|
|
self.override_relevance_score_fn = relevance_score_fn
|
|
self._time_partition_interval = time_partition_interval
|
|
self.sync_client = client.Sync(
|
|
self.service_url,
|
|
self.collection_name,
|
|
self.num_dimensions,
|
|
self._distance_strategy.value.lower(),
|
|
time_partition_interval=self._time_partition_interval,
|
|
**kwargs,
|
|
)
|
|
self.async_client = client.Async(
|
|
self.service_url,
|
|
self.collection_name,
|
|
self.num_dimensions,
|
|
self._distance_strategy.value.lower(),
|
|
time_partition_interval=self._time_partition_interval,
|
|
**kwargs,
|
|
)
|
|
self.__post_init__()
|
|
|
|
def __post_init__(
|
|
self,
|
|
) -> None:
|
|
"""
|
|
Initialize the store.
|
|
"""
|
|
self.sync_client.create_tables()
|
|
if self.pre_delete_collection:
|
|
self.sync_client.delete_all()
|
|
|
|
@property
|
|
def embeddings(self) -> Embeddings:
|
|
return self.embedding
|
|
|
|
def drop_tables(self) -> None:
|
|
self.sync_client.drop_table()
|
|
|
|
@classmethod
|
|
def __from(
|
|
cls,
|
|
texts: List[str],
|
|
embeddings: List[List[float]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
service_url: Optional[str] = None,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> TimescaleVector:
|
|
num_dimensions = len(embeddings[0])
|
|
|
|
if ids is None:
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
|
|
|
if not metadatas:
|
|
metadatas = [{} for _ in texts]
|
|
|
|
if service_url is None:
|
|
service_url = cls.get_service_url(kwargs)
|
|
|
|
store = cls(
|
|
service_url=service_url,
|
|
num_dimensions=num_dimensions,
|
|
collection_name=collection_name,
|
|
embedding=embedding,
|
|
distance_strategy=distance_strategy,
|
|
pre_delete_collection=pre_delete_collection,
|
|
**kwargs,
|
|
)
|
|
|
|
store.add_embeddings(
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
|
)
|
|
|
|
return store
|
|
|
|
@classmethod
|
|
async def __afrom(
|
|
cls,
|
|
texts: List[str],
|
|
embeddings: List[List[float]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
service_url: Optional[str] = None,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> TimescaleVector:
|
|
num_dimensions = len(embeddings[0])
|
|
|
|
if ids is None:
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
|
|
|
if not metadatas:
|
|
metadatas = [{} for _ in texts]
|
|
|
|
if service_url is None:
|
|
service_url = cls.get_service_url(kwargs)
|
|
|
|
store = cls(
|
|
service_url=service_url,
|
|
num_dimensions=num_dimensions,
|
|
collection_name=collection_name,
|
|
embedding=embedding,
|
|
distance_strategy=distance_strategy,
|
|
pre_delete_collection=pre_delete_collection,
|
|
**kwargs,
|
|
)
|
|
|
|
await store.aadd_embeddings(
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
|
)
|
|
|
|
return store
|
|
|
|
def add_embeddings(
|
|
self,
|
|
texts: Iterable[str],
|
|
embeddings: List[List[float]],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Add embeddings to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
embeddings: List of list of embedding vectors.
|
|
metadatas: List of metadatas associated with the texts.
|
|
kwargs: vectorstore specific parameters
|
|
"""
|
|
if ids is None:
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
|
|
|
if not metadatas:
|
|
metadatas = [{} for _ in texts]
|
|
|
|
records = list(zip(ids, metadatas, texts, embeddings))
|
|
self.sync_client.upsert(records)
|
|
|
|
return ids
|
|
|
|
async def aadd_embeddings(
|
|
self,
|
|
texts: Iterable[str],
|
|
embeddings: List[List[float]],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Add embeddings to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
embeddings: List of list of embedding vectors.
|
|
metadatas: List of metadatas associated with the texts.
|
|
kwargs: vectorstore specific parameters
|
|
"""
|
|
if ids is None:
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
|
|
|
if not metadatas:
|
|
metadatas = [{} for _ in texts]
|
|
|
|
records = list(zip(ids, metadatas, texts, embeddings))
|
|
await self.async_client.upsert(records)
|
|
|
|
return ids
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
kwargs: vectorstore specific parameters
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the vectorstore.
|
|
"""
|
|
embeddings = self.embedding.embed_documents(list(texts))
|
|
return self.add_embeddings(
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
|
)
|
|
|
|
async def aadd_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
kwargs: vectorstore specific parameters
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the vectorstore.
|
|
"""
|
|
embeddings = self.embedding.embed_documents(list(texts))
|
|
return await self.aadd_embeddings(
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
|
)
|
|
|
|
def _embed_query(self, query: str) -> Optional[List[float]]:
|
|
# an empty query should not be embedded
|
|
if query is None or query == "" or query.isspace():
|
|
return None
|
|
else:
|
|
return self.embedding.embed_query(query)
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[Union[dict, list]] = None,
|
|
predicates: Optional[Predicates] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Run similarity search with TimescaleVector with distance.
|
|
|
|
Args:
|
|
query (str): Query text to search for.
|
|
k (int): Number of results to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query.
|
|
"""
|
|
embedding = self._embed_query(query)
|
|
return self.similarity_search_by_vector(
|
|
embedding=embedding,
|
|
k=k,
|
|
filter=filter,
|
|
predicates=predicates,
|
|
**kwargs,
|
|
)
|
|
|
|
async def asimilarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[Union[dict, list]] = None,
|
|
predicates: Optional[Predicates] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Run similarity search with TimescaleVector with distance.
|
|
|
|
Args:
|
|
query (str): Query text to search for.
|
|
k (int): Number of results to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query.
|
|
"""
|
|
embedding = self._embed_query(query)
|
|
return await self.asimilarity_search_by_vector(
|
|
embedding=embedding,
|
|
k=k,
|
|
filter=filter,
|
|
predicates=predicates,
|
|
**kwargs,
|
|
)
|
|
|
|
def similarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[Union[dict, list]] = None,
|
|
predicates: Optional[Predicates] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
embedding = self._embed_query(query)
|
|
docs = self.similarity_search_with_score_by_vector(
|
|
embedding=embedding,
|
|
k=k,
|
|
filter=filter,
|
|
predicates=predicates,
|
|
**kwargs,
|
|
)
|
|
return docs
|
|
|
|
async def asimilarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[Union[dict, list]] = None,
|
|
predicates: Optional[Predicates] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
|
|
embedding = self._embed_query(query)
|
|
return await self.asimilarity_search_with_score_by_vector(
|
|
embedding=embedding,
|
|
k=k,
|
|
filter=filter,
|
|
predicates=predicates,
|
|
**kwargs,
|
|
)
|
|
|
|
def date_to_range_filter(self, **kwargs: Any) -> Any:
|
|
constructor_args = {
|
|
key: kwargs[key]
|
|
for key in [
|
|
"start_date",
|
|
"end_date",
|
|
"time_delta",
|
|
"start_inclusive",
|
|
"end_inclusive",
|
|
]
|
|
if key in kwargs
|
|
}
|
|
if not constructor_args or len(constructor_args) == 0:
|
|
return None
|
|
|
|
try:
|
|
from timescale_vector import client
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import timescale_vector python package. "
|
|
"Please install it with `pip install timescale-vector`."
|
|
)
|
|
return client.UUIDTimeRange(**constructor_args)
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
self,
|
|
embedding: Optional[List[float]],
|
|
k: int = 4,
|
|
filter: Optional[Union[dict, list]] = None,
|
|
predicates: Optional[Predicates] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
try:
|
|
from timescale_vector import client
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import timescale_vector python package. "
|
|
"Please install it with `pip install timescale-vector`."
|
|
)
|
|
|
|
results = self.sync_client.search(
|
|
embedding,
|
|
limit=k,
|
|
filter=filter,
|
|
predicates=predicates,
|
|
uuid_time_filter=self.date_to_range_filter(**kwargs),
|
|
)
|
|
|
|
docs = [
|
|
(
|
|
Document(
|
|
page_content=result[client.SEARCH_RESULT_CONTENTS_IDX],
|
|
metadata=result[client.SEARCH_RESULT_METADATA_IDX],
|
|
),
|
|
result[client.SEARCH_RESULT_DISTANCE_IDX],
|
|
)
|
|
for result in results
|
|
]
|
|
return docs
|
|
|
|
async def asimilarity_search_with_score_by_vector(
|
|
self,
|
|
embedding: Optional[List[float]],
|
|
k: int = 4,
|
|
filter: Optional[Union[dict, list]] = None,
|
|
predicates: Optional[Predicates] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
try:
|
|
from timescale_vector import client
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import timescale_vector python package. "
|
|
"Please install it with `pip install timescale-vector`."
|
|
)
|
|
|
|
results = await self.async_client.search(
|
|
embedding,
|
|
limit=k,
|
|
filter=filter,
|
|
predicates=predicates,
|
|
uuid_time_filter=self.date_to_range_filter(**kwargs),
|
|
)
|
|
|
|
docs = [
|
|
(
|
|
Document(
|
|
page_content=result[client.SEARCH_RESULT_CONTENTS_IDX],
|
|
metadata=result[client.SEARCH_RESULT_METADATA_IDX],
|
|
),
|
|
result[client.SEARCH_RESULT_DISTANCE_IDX],
|
|
)
|
|
for result in results
|
|
]
|
|
return docs
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: Optional[List[float]],
|
|
k: int = 4,
|
|
filter: Optional[Union[dict, list]] = None,
|
|
predicates: Optional[Predicates] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs most similar to embedding vector.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query vector.
|
|
"""
|
|
docs_and_scores = self.similarity_search_with_score_by_vector(
|
|
embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
async def asimilarity_search_by_vector(
|
|
self,
|
|
embedding: Optional[List[float]],
|
|
k: int = 4,
|
|
filter: Optional[Union[dict, list]] = None,
|
|
predicates: Optional[Predicates] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs most similar to embedding vector.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query vector.
|
|
"""
|
|
docs_and_scores = await self.asimilarity_search_with_score_by_vector(
|
|
embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls: Type[TimescaleVector],
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
ids: Optional[List[str]] = None,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> TimescaleVector:
|
|
"""
|
|
Return VectorStore initialized from texts and embeddings.
|
|
Postgres connection string is required
|
|
"Either pass it as a parameter
|
|
or set the TIMESCALE_SERVICE_URL environment variable.
|
|
"""
|
|
embeddings = embedding.embed_documents(list(texts))
|
|
|
|
return cls.__from(
|
|
texts,
|
|
embeddings,
|
|
embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
collection_name=collection_name,
|
|
distance_strategy=distance_strategy,
|
|
pre_delete_collection=pre_delete_collection,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
async def afrom_texts(
|
|
cls: Type[TimescaleVector],
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
ids: Optional[List[str]] = None,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> TimescaleVector:
|
|
"""
|
|
Return VectorStore initialized from texts and embeddings.
|
|
Postgres connection string is required
|
|
"Either pass it as a parameter
|
|
or set the TIMESCALE_SERVICE_URL environment variable.
|
|
"""
|
|
embeddings = embedding.embed_documents(list(texts))
|
|
|
|
return await cls.__afrom(
|
|
texts,
|
|
embeddings,
|
|
embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
collection_name=collection_name,
|
|
distance_strategy=distance_strategy,
|
|
pre_delete_collection=pre_delete_collection,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_embeddings(
|
|
cls,
|
|
text_embeddings: List[Tuple[str, List[float]]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
ids: Optional[List[str]] = None,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> TimescaleVector:
|
|
"""Construct TimescaleVector wrapper from raw documents and pre-
|
|
generated embeddings.
|
|
|
|
Return VectorStore initialized from documents and embeddings.
|
|
Postgres connection string is required
|
|
"Either pass it as a parameter
|
|
or set the TIMESCALE_SERVICE_URL environment variable.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.vectorstores import TimescaleVector
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
embeddings = OpenAIEmbeddings()
|
|
text_embeddings = embeddings.embed_documents(texts)
|
|
text_embedding_pairs = list(zip(texts, text_embeddings))
|
|
tvs = TimescaleVector.from_embeddings(text_embedding_pairs, embeddings)
|
|
"""
|
|
texts = [t[0] for t in text_embeddings]
|
|
embeddings = [t[1] for t in text_embeddings]
|
|
|
|
return cls.__from(
|
|
texts,
|
|
embeddings,
|
|
embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
collection_name=collection_name,
|
|
distance_strategy=distance_strategy,
|
|
pre_delete_collection=pre_delete_collection,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
async def afrom_embeddings(
|
|
cls,
|
|
text_embeddings: List[Tuple[str, List[float]]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
ids: Optional[List[str]] = None,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> TimescaleVector:
|
|
"""Construct TimescaleVector wrapper from raw documents and pre-
|
|
generated embeddings.
|
|
|
|
Return VectorStore initialized from documents and embeddings.
|
|
Postgres connection string is required
|
|
"Either pass it as a parameter
|
|
or set the TIMESCALE_SERVICE_URL environment variable.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.vectorstores import TimescaleVector
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
embeddings = OpenAIEmbeddings()
|
|
text_embeddings = embeddings.embed_documents(texts)
|
|
text_embedding_pairs = list(zip(texts, text_embeddings))
|
|
tvs = TimescaleVector.from_embeddings(text_embedding_pairs, embeddings)
|
|
"""
|
|
texts = [t[0] for t in text_embeddings]
|
|
embeddings = [t[1] for t in text_embeddings]
|
|
|
|
return await cls.__afrom(
|
|
texts,
|
|
embeddings,
|
|
embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
collection_name=collection_name,
|
|
distance_strategy=distance_strategy,
|
|
pre_delete_collection=pre_delete_collection,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_existing_index(
|
|
cls: Type[TimescaleVector],
|
|
embedding: Embeddings,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> TimescaleVector:
|
|
"""
|
|
Get instance of an existing TimescaleVector store.This method will
|
|
return the instance of the store without inserting any new
|
|
embeddings
|
|
"""
|
|
|
|
service_url = cls.get_service_url(kwargs)
|
|
|
|
store = cls(
|
|
service_url=service_url,
|
|
collection_name=collection_name,
|
|
embedding=embedding,
|
|
distance_strategy=distance_strategy,
|
|
pre_delete_collection=pre_delete_collection,
|
|
)
|
|
|
|
return store
|
|
|
|
@classmethod
|
|
def get_service_url(cls, kwargs: Dict[str, Any]) -> str:
|
|
service_url: str = get_from_dict_or_env(
|
|
data=kwargs,
|
|
key="service_url",
|
|
env_key="TIMESCALE_SERVICE_URL",
|
|
)
|
|
|
|
if not service_url:
|
|
raise ValueError(
|
|
"Postgres connection string is required"
|
|
"Either pass it as a parameter"
|
|
"or set the TIMESCALE_SERVICE_URL environment variable."
|
|
)
|
|
|
|
return service_url
|
|
|
|
@classmethod
|
|
def service_url_from_db_params(
|
|
cls,
|
|
host: str,
|
|
port: int,
|
|
database: str,
|
|
user: str,
|
|
password: str,
|
|
) -> str:
|
|
"""Return connection string from database parameters."""
|
|
return f"postgresql://{user}:{password}@{host}:{port}/{database}"
|
|
|
|
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
|
"""
|
|
The 'correct' relevance function
|
|
may differ depending on a few things, including:
|
|
- the distance / similarity metric used by the VectorStore
|
|
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
|
|
- embedding dimensionality
|
|
- etc.
|
|
"""
|
|
if self.override_relevance_score_fn is not None:
|
|
return self.override_relevance_score_fn
|
|
|
|
# Default strategy is to rely on distance strategy provided
|
|
# in vectorstore constructor
|
|
if self._distance_strategy == DistanceStrategy.COSINE:
|
|
return self._cosine_relevance_score_fn
|
|
elif self._distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE:
|
|
return self._euclidean_relevance_score_fn
|
|
elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
|
return self._max_inner_product_relevance_score_fn
|
|
else:
|
|
raise ValueError(
|
|
"No supported normalization function"
|
|
f" for distance_strategy of {self._distance_strategy}."
|
|
"Consider providing relevance_score_fn to TimescaleVector constructor."
|
|
)
|
|
|
|
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
|
|
"""Delete by vector ID or other criteria.
|
|
|
|
Args:
|
|
ids: List of ids to delete.
|
|
**kwargs: Other keyword arguments that subclasses might use.
|
|
|
|
Returns:
|
|
Optional[bool]: True if deletion is successful,
|
|
False otherwise, None if not implemented.
|
|
"""
|
|
if ids is None:
|
|
raise ValueError("No ids provided to delete.")
|
|
|
|
self.sync_client.delete_by_ids(ids)
|
|
return True
|
|
|
|
# todo should this be part of delete|()?
|
|
def delete_by_metadata(
|
|
self, filter: Union[Dict[str, str], List[Dict[str, str]]], **kwargs: Any
|
|
) -> Optional[bool]:
|
|
"""Delete by vector ID or other criteria.
|
|
|
|
Args:
|
|
ids: List of ids to delete.
|
|
**kwargs: Other keyword arguments that subclasses might use.
|
|
|
|
Returns:
|
|
Optional[bool]: True if deletion is successful,
|
|
False otherwise, None if not implemented.
|
|
"""
|
|
|
|
self.sync_client.delete_by_metadata(filter)
|
|
return True
|
|
|
|
class IndexType(str, enum.Enum):
|
|
"""Enumerator for the supported Index types"""
|
|
|
|
TIMESCALE_VECTOR = "tsv"
|
|
PGVECTOR_IVFFLAT = "ivfflat"
|
|
PGVECTOR_HNSW = "hnsw"
|
|
|
|
DEFAULT_INDEX_TYPE = IndexType.TIMESCALE_VECTOR
|
|
|
|
def create_index(
|
|
self, index_type: Union[IndexType, str] = DEFAULT_INDEX_TYPE, **kwargs: Any
|
|
) -> None:
|
|
try:
|
|
from timescale_vector import client
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import timescale_vector python package. "
|
|
"Please install it with `pip install timescale-vector`."
|
|
)
|
|
|
|
index_type = (
|
|
index_type.value if isinstance(index_type, self.IndexType) else index_type
|
|
)
|
|
if index_type == self.IndexType.PGVECTOR_IVFFLAT.value:
|
|
self.sync_client.create_embedding_index(client.IvfflatIndex(**kwargs))
|
|
|
|
if index_type == self.IndexType.PGVECTOR_HNSW.value:
|
|
self.sync_client.create_embedding_index(client.HNSWIndex(**kwargs))
|
|
|
|
if index_type == self.IndexType.TIMESCALE_VECTOR.value:
|
|
self.sync_client.create_embedding_index(
|
|
client.TimescaleVectorIndex(**kwargs)
|
|
)
|
|
|
|
def drop_index(self) -> None:
|
|
self.sync_client.drop_embedding_index()
|