mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
fa5d49f2c1
ran ```bash g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g" g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g" g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g" g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g" g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g" g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g" gco master libs/langchain/tests/unit_tests/*/test_imports.py gco master libs/langchain/tests/unit_tests/**/test_public_api.py ```
193 lines
5.3 KiB
Python
193 lines
5.3 KiB
Python
import base64
|
|
import io
|
|
import os
|
|
import uuid
|
|
from io import BytesIO
|
|
from pathlib import Path
|
|
|
|
from langchain.retrievers.multi_vector import MultiVectorRetriever
|
|
from langchain.storage import LocalFileStore
|
|
from langchain_community.chat_models import ChatOllama
|
|
from langchain_community.embeddings import OllamaEmbeddings
|
|
from langchain_community.vectorstores import Chroma
|
|
from langchain_core.documents import Document
|
|
from langchain_core.messages import HumanMessage
|
|
from PIL import Image
|
|
|
|
|
|
def image_summarize(img_base64, prompt):
|
|
"""
|
|
Make image summary
|
|
|
|
:param img_base64: Base64 encoded string for image
|
|
:param prompt: Text prompt for summarizatiomn
|
|
:return: Image summarization prompt
|
|
|
|
"""
|
|
chat = ChatOllama(model="bakllava", temperature=0)
|
|
|
|
msg = chat.invoke(
|
|
[
|
|
HumanMessage(
|
|
content=[
|
|
{"type": "text", "text": prompt},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": f"data:image/jpeg;base64,{img_base64}",
|
|
},
|
|
]
|
|
)
|
|
]
|
|
)
|
|
return msg.content
|
|
|
|
|
|
def generate_img_summaries(img_base64_list):
|
|
"""
|
|
Generate summaries for images
|
|
|
|
:param img_base64_list: Base64 encoded images
|
|
:return: List of image summaries and processed images
|
|
"""
|
|
|
|
# Store image summaries
|
|
image_summaries = []
|
|
processed_images = []
|
|
|
|
# Prompt
|
|
prompt = """Give a detailed summary of the image."""
|
|
|
|
# Apply summarization to images
|
|
for i, base64_image in enumerate(img_base64_list):
|
|
try:
|
|
image_summaries.append(image_summarize(base64_image, prompt))
|
|
processed_images.append(base64_image)
|
|
except Exception as e:
|
|
print(f"Error with image {i+1}: {e}")
|
|
|
|
return image_summaries, processed_images
|
|
|
|
|
|
def get_images(img_path):
|
|
"""
|
|
Extract images.
|
|
|
|
:param img_path: A string representing the path to the images.
|
|
"""
|
|
# Get image URIs
|
|
pil_images = [
|
|
Image.open(os.path.join(img_path, image_name))
|
|
for image_name in os.listdir(img_path)
|
|
if image_name.endswith(".jpg")
|
|
]
|
|
return pil_images
|
|
|
|
|
|
def resize_base64_image(base64_string, size=(128, 128)):
|
|
"""
|
|
Resize an image encoded as a Base64 string
|
|
|
|
:param base64_string: Base64 string
|
|
:param size: Image size
|
|
:return: Re-sized Base64 string
|
|
"""
|
|
# Decode the Base64 string
|
|
img_data = base64.b64decode(base64_string)
|
|
img = Image.open(io.BytesIO(img_data))
|
|
|
|
# Resize the image
|
|
resized_img = img.resize(size, Image.LANCZOS)
|
|
|
|
# Save the resized image to a bytes buffer
|
|
buffered = io.BytesIO()
|
|
resized_img.save(buffered, format=img.format)
|
|
|
|
# Encode the resized image to Base64
|
|
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
|
|
def convert_to_base64(pil_image):
|
|
"""
|
|
Convert PIL images to Base64 encoded strings
|
|
|
|
:param pil_image: PIL image
|
|
:return: Re-sized Base64 string
|
|
"""
|
|
|
|
buffered = BytesIO()
|
|
pil_image.save(buffered, format="JPEG") # You can change the format if needed
|
|
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
# img_str = resize_base64_image(img_str, size=(831,623))
|
|
return img_str
|
|
|
|
|
|
def create_multi_vector_retriever(vectorstore, image_summaries, images):
|
|
"""
|
|
Create retriever that indexes summaries, but returns raw images or texts
|
|
|
|
:param vectorstore: Vectorstore to store embedded image sumamries
|
|
:param image_summaries: Image summaries
|
|
:param images: Base64 encoded images
|
|
:return: Retriever
|
|
"""
|
|
|
|
# Initialize the storage layer for images
|
|
store = LocalFileStore(
|
|
str(Path(__file__).parent / "multi_vector_retriever_metadata")
|
|
)
|
|
id_key = "doc_id"
|
|
|
|
# Create the multi-vector retriever
|
|
retriever = MultiVectorRetriever(
|
|
vectorstore=vectorstore,
|
|
byte_store=store,
|
|
id_key=id_key,
|
|
)
|
|
|
|
# Helper function to add documents to the vectorstore and docstore
|
|
def add_documents(retriever, doc_summaries, doc_contents):
|
|
doc_ids = [str(uuid.uuid4()) for _ in doc_contents]
|
|
summary_docs = [
|
|
Document(page_content=s, metadata={id_key: doc_ids[i]})
|
|
for i, s in enumerate(doc_summaries)
|
|
]
|
|
retriever.vectorstore.add_documents(summary_docs)
|
|
retriever.docstore.mset(list(zip(doc_ids, doc_contents)))
|
|
|
|
add_documents(retriever, image_summaries, images)
|
|
|
|
return retriever
|
|
|
|
|
|
# Load images
|
|
doc_path = Path(__file__).parent / "docs/"
|
|
rel_doc_path = doc_path.relative_to(Path.cwd())
|
|
print("Read images")
|
|
pil_images = get_images(rel_doc_path)
|
|
|
|
# Convert to b64
|
|
images_base_64 = [convert_to_base64(i) for i in pil_images]
|
|
|
|
# Image summaries
|
|
print("Generate image summaries")
|
|
image_summaries, images_base_64_processed = generate_img_summaries(images_base_64)
|
|
|
|
# The vectorstore to use to index the images summaries
|
|
vectorstore_mvr = Chroma(
|
|
collection_name="image_summaries",
|
|
persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"),
|
|
embedding_function=OllamaEmbeddings(model="llama2:7b"),
|
|
)
|
|
|
|
# Create documents
|
|
images_base_64_processed_documents = [
|
|
Document(page_content=i) for i in images_base_64_processed
|
|
]
|
|
|
|
# Create retriever
|
|
retriever_multi_vector_img = create_multi_vector_retriever(
|
|
vectorstore_mvr,
|
|
image_summaries,
|
|
images_base_64_processed_documents,
|
|
)
|