mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
43 lines
1.6 KiB
Python
43 lines
1.6 KiB
Python
import pytest
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_community.embeddings import FakeEmbeddings
|
|
from langchain_community.retrievers.svm import SVMRetriever
|
|
|
|
|
|
class TestSVMRetriever:
|
|
@pytest.mark.requires("sklearn")
|
|
def test_from_texts(self) -> None:
|
|
input_texts = ["I have a pen.", "Do you have a pen?", "I have a bag."]
|
|
svm_retriever = SVMRetriever.from_texts(
|
|
texts=input_texts, embeddings=FakeEmbeddings(size=100)
|
|
)
|
|
assert len(svm_retriever.texts) == 3
|
|
|
|
@pytest.mark.requires("sklearn")
|
|
def test_from_documents(self) -> None:
|
|
input_docs = [
|
|
Document(page_content="I have a pen.", metadata={"foo": "bar"}),
|
|
Document(page_content="Do you have a pen?"),
|
|
Document(page_content="I have a bag."),
|
|
]
|
|
svm_retriever = SVMRetriever.from_documents(
|
|
documents=input_docs, embeddings=FakeEmbeddings(size=100)
|
|
)
|
|
assert len(svm_retriever.texts) == 3
|
|
|
|
@pytest.mark.requires("sklearn")
|
|
def test_metadata_persists(self) -> None:
|
|
input_docs = [
|
|
Document(page_content="I have a pen.", metadata={"foo": "bar"}),
|
|
Document(page_content="How about you?", metadata={"foo": "baz"}),
|
|
Document(page_content="I have a bag.", metadata={"foo": "qux"}),
|
|
]
|
|
svm_retriever = SVMRetriever.from_documents(
|
|
documents=input_docs, embeddings=FakeEmbeddings(size=100)
|
|
)
|
|
query = "Have anything?"
|
|
output_docs = svm_retriever.get_relevant_documents(query=query)
|
|
for doc in output_docs:
|
|
assert "foo" in doc.metadata
|