mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
55efbb8a7e
``` class Joke(BaseModel): setup: str = Field(description="question to set up a joke") punchline: str = Field(description="answer to resolve the joke") joke_query = "Tell me a joke." # Or, an example with compound type fields. #class FloatArray(BaseModel): # values: List[float] = Field(description="list of floats") # #float_array_query = "Write out a few terms of fiboacci." model = OpenAI(model_name='text-davinci-003', temperature=0.0) parser = PydanticOutputParser(pydantic_object=Joke) prompt = PromptTemplate( template="Answer the user query.\n{format_instructions}\n{query}\n", input_variables=["query"], partial_variables={"format_instructions": parser.get_format_instructions()} ) _input = prompt.format_prompt(query=joke_query) print("Prompt:\n", _input.to_string()) output = model(_input.to_string()) print("Completion:\n", output) parsed_output = parser.parse(output) print("Parsed completion:\n", parsed_output) ``` ``` Prompt: Answer the user query. The output should be formatted as a JSON instance that conforms to the JSON schema below. For example, the object {"foo": ["bar", "baz"]} conforms to the schema {"foo": {"description": "a list of strings field", "type": "string"}}. Here is the output schema: --- {"setup": {"description": "question to set up a joke", "type": "string"}, "punchline": {"description": "answer to resolve the joke", "type": "string"}} --- Tell me a joke. Completion: {"setup": "Why don't scientists trust atoms?", "punchline": "Because they make up everything!"} Parsed completion: setup="Why don't scientists trust atoms?" punchline='Because they make up everything!' ``` Ofc, works only with LMs of sufficient capacity. DaVinci is reliable but not always. --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
466 lines
12 KiB
Plaintext
466 lines
12 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "084ee2f0",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Output Parsers\n",
|
|
"\n",
|
|
"Language models output text. But many times you may want to get more structured information than just text back. This is where output parsers come in.\n",
|
|
"\n",
|
|
"Output parsers are classes that help structure language model responses. There are two main methods an output parser must implement:\n",
|
|
"\n",
|
|
"- `get_format_instructions() -> str`: A method which returns a string containing instructions for how the output of a language model should be formatted.\n",
|
|
"- `parse(str) -> Any`: A method which takes in a string (assumed to be the response from a language model) and parses it into some structure.\n",
|
|
"\n",
|
|
"Below we go over some examples of output parsers."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "5f0c8a33",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate\n",
|
|
"from langchain.llms import OpenAI\n",
|
|
"from langchain.chat_models import ChatOpenAI"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a1ae632a",
|
|
"metadata": {},
|
|
"source": [
|
|
"## PydanticOutputParser\n",
|
|
"This output parser allows users to specify an arbitrary JSON schema and query LLMs for JSON outputs that conform to that schema.\n",
|
|
"\n",
|
|
"Keep in mind that large language models are leaky abstractions! You'll have to use an LLM with sufficient capacity to generate well-formed JSON. In the OpenAI family, DaVinci can do reliably but Curie's ability already drops off dramatically. \n",
|
|
"\n",
|
|
"Use Pydantic to declare your data model. Pydantic's BaseModel like a Python dataclass, but with actual type checking + coercion."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "cba6d8e3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.output_parsers import PydanticOutputParser\n",
|
|
"from pydantic import BaseModel, Field, validator\n",
|
|
"from typing import List"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "0a203100",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"model_name = 'text-davinci-003'\n",
|
|
"temperature = 0.0\n",
|
|
"model = OpenAI(model_name=model_name, temperature=temperature)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "b3f16168",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Joke(setup='Why did the chicken cross the playground?', punchline='To get to the other slide!')"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Define your desired data structure.\n",
|
|
"class Joke(BaseModel):\n",
|
|
" setup: str = Field(description=\"question to set up a joke\")\n",
|
|
" punchline: str = Field(description=\"answer to resolve the joke\")\n",
|
|
" \n",
|
|
" # You can add custom validation logic easily with Pydantic.\n",
|
|
" @validator('setup')\n",
|
|
" def question_ends_with_question_mark(cls, field):\n",
|
|
" if field[-1] != '?':\n",
|
|
" raise ValueError(\"Badly formed question!\")\n",
|
|
" return field\n",
|
|
"\n",
|
|
"# And a query intented to prompt a language model to populate the data structure.\n",
|
|
"joke_query = \"Tell me a joke.\"\n",
|
|
"\n",
|
|
"# Set up a parser + inject instructions into the prompt template.\n",
|
|
"parser = PydanticOutputParser(pydantic_object=Joke)\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" template=\"Answer the user query.\\n{format_instructions}\\n{query}\\n\",\n",
|
|
" input_variables=[\"query\"],\n",
|
|
" partial_variables={\"format_instructions\": parser.get_format_instructions()}\n",
|
|
")\n",
|
|
"\n",
|
|
"_input = prompt.format_prompt(query=joke_query)\n",
|
|
"\n",
|
|
"output = model(_input.to_string())\n",
|
|
"\n",
|
|
"parser.parse(output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "03049f88",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Actor(name='Tom Hanks', film_names=['Forrest Gump', 'Saving Private Ryan', 'The Green Mile', 'Cast Away', 'Toy Story', 'A League of Their Own'])"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Here's another example, but with a compound typed field.\n",
|
|
"class Actor(BaseModel):\n",
|
|
" name: str = Field(description=\"name of an actor\")\n",
|
|
" film_names: List[str] = Field(description=\"list of names of films they starred in\")\n",
|
|
" \n",
|
|
"actor_query = \"Generate the filmography for a random actor.\"\n",
|
|
"\n",
|
|
"parser = PydanticOutputParser(pydantic_object=Actor)\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" template=\"Answer the user query.\\n{format_instructions}\\n{query}\\n\",\n",
|
|
" input_variables=[\"query\"],\n",
|
|
" partial_variables={\"format_instructions\": parser.get_format_instructions()}\n",
|
|
")\n",
|
|
"\n",
|
|
"_input = prompt.format_prompt(query=actor_query)\n",
|
|
"\n",
|
|
"output = model(_input.to_string())\n",
|
|
"\n",
|
|
"parser.parse(output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "61f67890",
|
|
"metadata": {},
|
|
"source": [
|
|
"<br>\n",
|
|
"<br>\n",
|
|
"<br>\n",
|
|
"<br>\n",
|
|
"\n",
|
|
"---"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "91871002",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Structured Output Parser\n",
|
|
"\n",
|
|
"While the Pydantic/JSON parser is more powerful, we initially experimented data structures having text fields only."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "b492997a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.output_parsers import StructuredOutputParser, ResponseSchema"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "09473dce",
|
|
"metadata": {},
|
|
"source": [
|
|
"Here we define the response schema we want to receive."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "432ac44a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"response_schemas = [\n",
|
|
" ResponseSchema(name=\"answer\", description=\"answer to the user's question\"),\n",
|
|
" ResponseSchema(name=\"source\", description=\"source used to answer the user's question, should be a website.\")\n",
|
|
"]\n",
|
|
"output_parser = StructuredOutputParser.from_response_schemas(response_schemas)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7b92ce96",
|
|
"metadata": {},
|
|
"source": [
|
|
"We now get a string that contains instructions for how the response should be formatted, and we then insert that into our prompt."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "593cfc25",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"format_instructions = output_parser.get_format_instructions()\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" template=\"answer the users question as best as possible.\\n{format_instructions}\\n{question}\",\n",
|
|
" input_variables=[\"question\"],\n",
|
|
" partial_variables={\"format_instructions\": format_instructions}\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0943e783",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can now use this to format a prompt to send to the language model, and then parse the returned result."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "106f1ba6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"model = OpenAI(temperature=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "86d9d24f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"_input = prompt.format_prompt(question=\"what's the capital of france\")\n",
|
|
"output = model(_input.to_string())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "956bdc99",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'answer': 'Paris', 'source': 'https://en.wikipedia.org/wiki/Paris'}"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"output_parser.parse(output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "da639285",
|
|
"metadata": {},
|
|
"source": [
|
|
"And here's an example of using this in a chat model"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "8f483d7d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"chat_model = ChatOpenAI(temperature=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "f761cbf1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"prompt = ChatPromptTemplate(\n",
|
|
" messages=[\n",
|
|
" HumanMessagePromptTemplate.from_template(\"answer the users question as best as possible.\\n{format_instructions}\\n{question}\") \n",
|
|
" ],\n",
|
|
" input_variables=[\"question\"],\n",
|
|
" partial_variables={\"format_instructions\": format_instructions}\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "edd73ae3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"_input = prompt.format_prompt(question=\"what's the capital of france\")\n",
|
|
"output = chat_model(_input.to_messages())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"id": "a3c8b91e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'answer': 'Paris', 'source': 'https://en.wikipedia.org/wiki/Paris'}"
|
|
]
|
|
},
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"output_parser.parse(output.content)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9936fa27",
|
|
"metadata": {},
|
|
"source": [
|
|
"## CommaSeparatedListOutputParser\n",
|
|
"\n",
|
|
"Here's another parser strictly less powerful than Pydantic/JSON parsing."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"id": "872246d7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.output_parsers import CommaSeparatedListOutputParser"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"id": "c3f9aee6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"output_parser = CommaSeparatedListOutputParser()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"id": "e77871b7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"format_instructions = output_parser.get_format_instructions()\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" template=\"List five {subject}.\\n{format_instructions}\",\n",
|
|
" input_variables=[\"subject\"],\n",
|
|
" partial_variables={\"format_instructions\": format_instructions}\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"id": "a71cb5d3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"model = OpenAI(temperature=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"id": "783d7d98",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"_input = prompt.format(subject=\"ice cream flavors\")\n",
|
|
"output = model(_input)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 21,
|
|
"id": "fcb81344",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"['Vanilla',\n",
|
|
" 'Chocolate',\n",
|
|
" 'Strawberry',\n",
|
|
" 'Mint Chocolate Chip',\n",
|
|
" 'Cookies and Cream']"
|
|
]
|
|
},
|
|
"execution_count": 21,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"output_parser.parse(output)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|