mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
2759e2d857
This is to add save_local and load_local to tfidf_vectorizer and docs in tfidf_retriever to make the vectorizer reusable. <!-- Thank you for contributing to LangChain! Replace this comment with: - Description: add save_local and load_local to tfidf_vectorizer and docs in tfidf_retriever - Issue: None - Dependencies: None - Tag maintainer: @rlancemartin, @eyurtsev - Twitter handle: @MlopsJ Please make sure you're PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. Maintainer responsibilities: - General / Misc / if you don't know who to tag: @baskaryan - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev - Models / Prompts: @hwchase17, @baskaryan - Memory: @hwchase17 - Agents / Tools / Toolkits: @hinthornw - Tracing / Callbacks: @agola11 - Async: @agola11 If no one reviews your PR within a few days, feel free to @-mention the same people again. See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md --> --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
222 lines
4.8 KiB
Plaintext
222 lines
4.8 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ab66dd43",
|
|
"metadata": {},
|
|
"source": [
|
|
"# TF-IDF\n",
|
|
"\n",
|
|
">[TF-IDF](https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting) means term-frequency times inverse document-frequency.\n",
|
|
"\n",
|
|
"This notebook goes over how to use a retriever that under the hood uses [TF-IDF](https://en.wikipedia.org/wiki/Tf%E2%80%93idf) using `scikit-learn` package.\n",
|
|
"\n",
|
|
"For more information on the details of TF-IDF see [this blog post](https://medium.com/data-science-bootcamp/tf-idf-basics-of-information-retrieval-48de122b2a4c)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "a801b57c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# !pip install scikit-learn"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "393ac030",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.retrievers import TFIDFRetriever"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aaf80e7f",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Create New Retriever with Texts"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "98b1c017",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"retriever = TFIDFRetriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c016b266",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Create a New Retriever with Documents\n",
|
|
"\n",
|
|
"You can now create a new retriever with the documents you created."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "53af4f00",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.schema import Document\n",
|
|
"\n",
|
|
"retriever = TFIDFRetriever.from_documents(\n",
|
|
" [\n",
|
|
" Document(page_content=\"foo\"),\n",
|
|
" Document(page_content=\"bar\"),\n",
|
|
" Document(page_content=\"world\"),\n",
|
|
" Document(page_content=\"hello\"),\n",
|
|
" Document(page_content=\"foo bar\"),\n",
|
|
" ]\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "08437fa2",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Use Retriever\n",
|
|
"\n",
|
|
"We can now use the retriever!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "c0455218",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"result = retriever.get_relevant_documents(\"foo\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "7dfa5c29",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='foo', metadata={}),\n",
|
|
" Document(page_content='foo bar', metadata={}),\n",
|
|
" Document(page_content='hello', metadata={}),\n",
|
|
" Document(page_content='world', metadata={})]"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"result"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "363f3c04",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Save and load\n",
|
|
"\n",
|
|
"You can easily save and load this retriever, making it handy for local development!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "10c90d03",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"retriever.save_local(\"testing.pkl\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "fb3b153c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"retriever_copy = TFIDFRetriever.load_local(\"testing.pkl\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "c03ff3c7",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='foo', metadata={}),\n",
|
|
" Document(page_content='foo bar', metadata={}),\n",
|
|
" Document(page_content='hello', metadata={}),\n",
|
|
" Document(page_content='world', metadata={})]"
|
|
]
|
|
},
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"retriever_copy.get_relevant_documents(\"foo\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2d7c5728",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|