langchain/templates/rag-self-query/ingest.py
Bagatur fa5d49f2c1
docs, experimental[patch], langchain[patch], community[patch]: update storage imports (#15429)
ran 
```bash
g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g"
g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g"
g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g"
g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g"
g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g"
g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g"
gco master libs/langchain/tests/unit_tests/*/test_imports.py
gco master libs/langchain/tests/unit_tests/**/test_public_api.py
```
2024-01-02 16:47:11 -05:00

52 lines
1.7 KiB
Python

import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import JSONLoader
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import ElasticsearchStore
ELASTIC_CLOUD_ID = os.getenv("ELASTIC_CLOUD_ID")
ELASTIC_USERNAME = os.getenv("ELASTIC_USERNAME", "elastic")
ELASTIC_PASSWORD = os.getenv("ELASTIC_PASSWORD")
ES_URL = os.getenv("ES_URL", "http://localhost:9200")
ELASTIC_INDEX_NAME = os.getenv("ELASTIC_INDEX_NAME", "workspace-search-example")
def _metadata_func(record: dict, metadata: dict) -> dict:
metadata["name"] = record.get("name")
metadata["summary"] = record.get("summary")
metadata["url"] = record.get("url")
# give more descriptive name for metadata filtering.
metadata["location"] = record.get("category")
metadata["updated_at"] = record.get("updated_at")
metadata["created_on"] = record.get("created_on")
return metadata
loader = JSONLoader(
file_path="./data/documents.json",
jq_schema=".[]",
content_key="content",
metadata_func=_metadata_func,
)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=250)
documents = text_splitter.split_documents(loader.load())
if ELASTIC_CLOUD_ID and ELASTIC_USERNAME and ELASTIC_PASSWORD:
es_connection_details = {
"es_cloud_id": ELASTIC_CLOUD_ID,
"es_user": ELASTIC_USERNAME,
"es_password": ELASTIC_PASSWORD,
}
else:
es_connection_details = {"es_url": ES_URL}
vecstore = ElasticsearchStore(
ELASTIC_INDEX_NAME,
embedding=OpenAIEmbeddings(),
**es_connection_details,
)
vecstore.add_documents(documents)