langchain/templates/neo4j-parent/ingest.py
Bagatur fa5d49f2c1
docs, experimental[patch], langchain[patch], community[patch]: update storage imports (#15429)
ran 
```bash
g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g"
g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g"
g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g"
g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g"
g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g"
g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g"
gco master libs/langchain/tests/unit_tests/*/test_imports.py
gco master libs/langchain/tests/unit_tests/**/test_public_api.py
```
2024-01-02 16:47:11 -05:00

48 lines
1.4 KiB
Python

from pathlib import Path
from langchain.text_splitter import TokenTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.graphs import Neo4jGraph
from langchain_community.vectorstores import Neo4jVector
txt_path = Path(__file__).parent / "dune.txt"
graph = Neo4jGraph()
# Load the text file
loader = TextLoader(str(txt_path))
documents = loader.load()
# Define chunking strategy
parent_splitter = TokenTextSplitter(chunk_size=512, chunk_overlap=24)
child_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=24)
# Store parent-child patterns into graph
parent_documents = parent_splitter.split_documents(documents)
for parent in parent_documents:
child_documents = child_splitter.split_documents([parent])
params = {
"parent": parent.page_content,
"children": [c.page_content for c in child_documents],
}
graph.query(
"""
CREATE (p:Parent {text: $parent})
WITH p
UNWIND $children AS child
CREATE (c:Child {text: child})
CREATE (c)-[:HAS_PARENT]->(p)
""",
params,
)
# Calculate embedding values on the child nodes
Neo4jVector.from_existing_graph(
OpenAIEmbeddings(),
index_name="retrieval",
node_label="Child",
text_node_properties=["text"],
embedding_node_property="embedding",
)