langchain/docs/extras/integrations/text_embedding/clarifai.ipynb
2023-09-16 17:22:48 -07:00

211 lines
5.1 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "9597802c",
"metadata": {},
"source": [
"# Clarifai\n",
"\n",
">[Clarifai](https://www.clarifai.com/) is an AI Platform that provides the full AI lifecycle ranging from data exploration, data labeling, model training, evaluation, and inference.\n",
"\n",
"This example goes over how to use LangChain to interact with `Clarifai` [models](https://clarifai.com/explore/models). Text embedding models in particular can be found [here](https://clarifai.com/explore/models?page=1&perPage=24&filterData=%5B%7B%22field%22%3A%22model_type_id%22%2C%22value%22%3A%5B%22text-embedder%22%5D%7D%5D).\n",
"\n",
"To use Clarifai, you must have an account and a Personal Access Token (PAT) key. \n",
"[Check here](https://clarifai.com/settings/security) to get or create a PAT."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "2a773d8d",
"metadata": {},
"source": [
"# Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "91ea14ce-831d-409a-a88f-30353acdabd1",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Install required dependencies\n",
"!pip install clarifai"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "426f1156",
"metadata": {},
"source": [
"# Imports\n",
"Here we will be setting the personal access token. You can find your PAT under [settings/security](https://clarifai.com/settings/security) in your Clarifai account."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3f5dc9d7-65e3-4b5b-9086-3327d016cfe0",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" ········\n"
]
}
],
"source": [
"# Please login and get your API key from https://clarifai.com/settings/security\n",
"from getpass import getpass\n",
"\n",
"CLARIFAI_PAT = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6fb585dd",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Import the required modules\n",
"from langchain.embeddings import ClarifaiEmbeddings\n",
"from langchain.prompts import PromptTemplate\nfrom langchain.chains import LLMChain"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "16521ed2",
"metadata": {},
"source": [
"# Input\n",
"Create a prompt template to be used with the LLM Chain:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "035dea0f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c8905eac",
"metadata": {},
"source": [
"# Setup\n",
"Set the user id and app id to the application in which the model resides. You can find a list of public models on https://clarifai.com/explore/models\n",
"\n",
"You will have to also initialize the model id and if needed, the model version id. Some models have many versions, you can choose the one appropriate for your task."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1fe9bf15",
"metadata": {},
"outputs": [],
"source": [
"USER_ID = \"salesforce\"\n",
"APP_ID = \"blip\"\n",
"MODEL_ID = \"multimodal-embedder-blip-2\"\n",
"\n",
"# You can provide a specific model version as the model_version_id arg.\n",
"# MODEL_VERSION_ID = \"MODEL_VERSION_ID\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3f3458d9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Initialize a Clarifai embedding model\n",
"embeddings = ClarifaiEmbeddings(\n",
" pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a641dbd9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "32b4d5f4-2b8e-4681-856f-19a3dd141ae4",
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "47076457-1880-48ac-970f-872ead6f0d94",
"metadata": {},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}