mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
449 lines
15 KiB
Python
449 lines
15 KiB
Python
import json
|
|
import warnings
|
|
from abc import ABC
|
|
from typing import Any, Dict, Iterator, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.outputs import GenerationChunk
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
from langchain_community.utilities.anthropic import (
|
|
get_num_tokens_anthropic,
|
|
get_token_ids_anthropic,
|
|
)
|
|
|
|
HUMAN_PROMPT = "\n\nHuman:"
|
|
ASSISTANT_PROMPT = "\n\nAssistant:"
|
|
ALTERNATION_ERROR = (
|
|
"Error: Prompt must alternate between '\n\nHuman:' and '\n\nAssistant:'."
|
|
)
|
|
|
|
|
|
def _add_newlines_before_ha(input_text: str) -> str:
|
|
new_text = input_text
|
|
for word in ["Human:", "Assistant:"]:
|
|
new_text = new_text.replace(word, "\n\n" + word)
|
|
for i in range(2):
|
|
new_text = new_text.replace("\n\n\n" + word, "\n\n" + word)
|
|
return new_text
|
|
|
|
|
|
def _human_assistant_format(input_text: str) -> str:
|
|
if input_text.count("Human:") == 0 or (
|
|
input_text.find("Human:") > input_text.find("Assistant:")
|
|
and "Assistant:" in input_text
|
|
):
|
|
input_text = HUMAN_PROMPT + " " + input_text # SILENT CORRECTION
|
|
if input_text.count("Assistant:") == 0:
|
|
input_text = input_text + ASSISTANT_PROMPT # SILENT CORRECTION
|
|
if input_text[: len("Human:")] == "Human:":
|
|
input_text = "\n\n" + input_text
|
|
input_text = _add_newlines_before_ha(input_text)
|
|
count = 0
|
|
# track alternation
|
|
for i in range(len(input_text)):
|
|
if input_text[i : i + len(HUMAN_PROMPT)] == HUMAN_PROMPT:
|
|
if count % 2 == 0:
|
|
count += 1
|
|
else:
|
|
warnings.warn(ALTERNATION_ERROR + f" Received {input_text}")
|
|
if input_text[i : i + len(ASSISTANT_PROMPT)] == ASSISTANT_PROMPT:
|
|
if count % 2 == 1:
|
|
count += 1
|
|
else:
|
|
warnings.warn(ALTERNATION_ERROR + f" Received {input_text}")
|
|
|
|
if count % 2 == 1: # Only saw Human, no Assistant
|
|
input_text = input_text + ASSISTANT_PROMPT # SILENT CORRECTION
|
|
|
|
return input_text
|
|
|
|
|
|
class LLMInputOutputAdapter:
|
|
"""Adapter class to prepare the inputs from Langchain to a format
|
|
that LLM model expects.
|
|
|
|
It also provides helper function to extract
|
|
the generated text from the model response."""
|
|
|
|
provider_to_output_key_map = {
|
|
"anthropic": "completion",
|
|
"amazon": "outputText",
|
|
"cohere": "text",
|
|
"meta": "generation",
|
|
}
|
|
|
|
@classmethod
|
|
def prepare_input(
|
|
cls, provider: str, prompt: str, model_kwargs: Dict[str, Any]
|
|
) -> Dict[str, Any]:
|
|
input_body = {**model_kwargs}
|
|
if provider == "anthropic":
|
|
input_body["prompt"] = _human_assistant_format(prompt)
|
|
elif provider in ("ai21", "cohere", "meta"):
|
|
input_body["prompt"] = prompt
|
|
elif provider == "amazon":
|
|
input_body = dict()
|
|
input_body["inputText"] = prompt
|
|
input_body["textGenerationConfig"] = {**model_kwargs}
|
|
else:
|
|
input_body["inputText"] = prompt
|
|
|
|
if provider == "anthropic" and "max_tokens_to_sample" not in input_body:
|
|
input_body["max_tokens_to_sample"] = 256
|
|
|
|
return input_body
|
|
|
|
@classmethod
|
|
def prepare_output(cls, provider: str, response: Any) -> str:
|
|
if provider == "anthropic":
|
|
response_body = json.loads(response.get("body").read().decode())
|
|
return response_body.get("completion")
|
|
else:
|
|
response_body = json.loads(response.get("body").read())
|
|
|
|
if provider == "ai21":
|
|
return response_body.get("completions")[0].get("data").get("text")
|
|
elif provider == "cohere":
|
|
return response_body.get("generations")[0].get("text")
|
|
elif provider == "meta":
|
|
return response_body.get("generation")
|
|
else:
|
|
return response_body.get("results")[0].get("outputText")
|
|
|
|
@classmethod
|
|
def prepare_output_stream(
|
|
cls, provider: str, response: Any, stop: Optional[List[str]] = None
|
|
) -> Iterator[GenerationChunk]:
|
|
stream = response.get("body")
|
|
|
|
if not stream:
|
|
return
|
|
|
|
if provider not in cls.provider_to_output_key_map:
|
|
raise ValueError(
|
|
f"Unknown streaming response output key for provider: {provider}"
|
|
)
|
|
|
|
for event in stream:
|
|
chunk = event.get("chunk")
|
|
if chunk:
|
|
chunk_obj = json.loads(chunk.get("bytes").decode())
|
|
if provider == "cohere" and (
|
|
chunk_obj["is_finished"]
|
|
or chunk_obj[cls.provider_to_output_key_map[provider]]
|
|
== "<EOS_TOKEN>"
|
|
):
|
|
return
|
|
|
|
# chunk obj format varies with provider
|
|
yield GenerationChunk(
|
|
text=chunk_obj[cls.provider_to_output_key_map[provider]]
|
|
)
|
|
|
|
|
|
class BedrockBase(BaseModel, ABC):
|
|
"""Base class for Bedrock models."""
|
|
|
|
client: Any = Field(exclude=True) #: :meta private:
|
|
|
|
region_name: Optional[str] = None
|
|
"""The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable
|
|
or region specified in ~/.aws/config in case it is not provided here.
|
|
"""
|
|
|
|
credentials_profile_name: Optional[str] = Field(default=None, exclude=True)
|
|
"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
|
|
has either access keys or role information specified.
|
|
If not specified, the default credential profile or, if on an EC2 instance,
|
|
credentials from IMDS will be used.
|
|
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
"""
|
|
|
|
model_id: str
|
|
"""Id of the model to call, e.g., amazon.titan-text-express-v1, this is
|
|
equivalent to the modelId property in the list-foundation-models api"""
|
|
|
|
model_kwargs: Optional[Dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
endpoint_url: Optional[str] = None
|
|
"""Needed if you don't want to default to us-east-1 endpoint"""
|
|
|
|
streaming: bool = False
|
|
"""Whether to stream the results."""
|
|
|
|
provider_stop_sequence_key_name_map: Mapping[str, str] = {
|
|
"anthropic": "stop_sequences",
|
|
"amazon": "stopSequences",
|
|
"ai21": "stop_sequences",
|
|
"cohere": "stop_sequences",
|
|
}
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that AWS credentials to and python package exists in environment."""
|
|
|
|
# Skip creating new client if passed in constructor
|
|
if values["client"] is not None:
|
|
return values
|
|
|
|
try:
|
|
import boto3
|
|
|
|
if values["credentials_profile_name"] is not None:
|
|
session = boto3.Session(profile_name=values["credentials_profile_name"])
|
|
else:
|
|
# use default credentials
|
|
session = boto3.Session()
|
|
|
|
values["region_name"] = get_from_dict_or_env(
|
|
values,
|
|
"region_name",
|
|
"AWS_DEFAULT_REGION",
|
|
default=session.region_name,
|
|
)
|
|
|
|
client_params = {}
|
|
if values["region_name"]:
|
|
client_params["region_name"] = values["region_name"]
|
|
if values["endpoint_url"]:
|
|
client_params["endpoint_url"] = values["endpoint_url"]
|
|
|
|
values["client"] = session.client("bedrock-runtime", **client_params)
|
|
|
|
except ImportError:
|
|
raise ModuleNotFoundError(
|
|
"Could not import boto3 python package. "
|
|
"Please install it with `pip install boto3`."
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"Could not load credentials to authenticate with AWS client. "
|
|
"Please check that credentials in the specified "
|
|
"profile name are valid."
|
|
) from e
|
|
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
return {
|
|
**{"model_kwargs": _model_kwargs},
|
|
}
|
|
|
|
def _get_provider(self) -> str:
|
|
return self.model_id.split(".")[0]
|
|
|
|
@property
|
|
def _model_is_anthropic(self) -> bool:
|
|
return self._get_provider() == "anthropic"
|
|
|
|
def _prepare_input_and_invoke(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
provider = self._get_provider()
|
|
params = {**_model_kwargs, **kwargs}
|
|
input_body = LLMInputOutputAdapter.prepare_input(provider, prompt, params)
|
|
body = json.dumps(input_body)
|
|
accept = "application/json"
|
|
contentType = "application/json"
|
|
|
|
try:
|
|
response = self.client.invoke_model(
|
|
body=body, modelId=self.model_id, accept=accept, contentType=contentType
|
|
)
|
|
text = LLMInputOutputAdapter.prepare_output(provider, response)
|
|
|
|
except Exception as e:
|
|
raise ValueError(f"Error raised by bedrock service: {e}")
|
|
|
|
if stop is not None:
|
|
text = enforce_stop_tokens(text, stop)
|
|
|
|
return text
|
|
|
|
def _prepare_input_and_invoke_stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
_model_kwargs = self.model_kwargs or {}
|
|
provider = self._get_provider()
|
|
|
|
if stop:
|
|
if provider not in self.provider_stop_sequence_key_name_map:
|
|
raise ValueError(
|
|
f"Stop sequence key name for {provider} is not supported."
|
|
)
|
|
|
|
# stop sequence from _generate() overrides
|
|
# stop sequences in the class attribute
|
|
_model_kwargs[self.provider_stop_sequence_key_name_map.get(provider)] = stop
|
|
|
|
if provider == "cohere":
|
|
_model_kwargs["stream"] = True
|
|
|
|
params = {**_model_kwargs, **kwargs}
|
|
input_body = LLMInputOutputAdapter.prepare_input(provider, prompt, params)
|
|
body = json.dumps(input_body)
|
|
|
|
try:
|
|
response = self.client.invoke_model_with_response_stream(
|
|
body=body,
|
|
modelId=self.model_id,
|
|
accept="application/json",
|
|
contentType="application/json",
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(f"Error raised by bedrock service: {e}")
|
|
|
|
for chunk in LLMInputOutputAdapter.prepare_output_stream(
|
|
provider, response, stop
|
|
):
|
|
yield chunk
|
|
if run_manager is not None:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
|
|
|
|
class Bedrock(LLM, BedrockBase):
|
|
"""Bedrock models.
|
|
|
|
To authenticate, the AWS client uses the following methods to
|
|
automatically load credentials:
|
|
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
|
|
If a specific credential profile should be used, you must pass
|
|
the name of the profile from the ~/.aws/credentials file that is to be used.
|
|
|
|
Make sure the credentials / roles used have the required policies to
|
|
access the Bedrock service.
|
|
"""
|
|
|
|
"""
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from bedrock_langchain.bedrock_llm import BedrockLLM
|
|
|
|
llm = BedrockLLM(
|
|
credentials_profile_name="default",
|
|
model_id="amazon.titan-text-express-v1",
|
|
streaming=True
|
|
)
|
|
|
|
"""
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "amazon_bedrock"
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
"""Return whether this model can be serialized by Langchain."""
|
|
return True
|
|
|
|
@classmethod
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
"""Get the namespace of the langchain object."""
|
|
return ["langchain", "llms", "bedrock"]
|
|
|
|
@property
|
|
def lc_attributes(self) -> Dict[str, Any]:
|
|
attributes: Dict[str, Any] = {}
|
|
|
|
if self.region_name:
|
|
attributes["region_name"] = self.region_name
|
|
|
|
return attributes
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
"""Call out to Bedrock service with streaming.
|
|
|
|
Args:
|
|
prompt (str): The prompt to pass into the model
|
|
stop (Optional[List[str]], optional): Stop sequences. These will
|
|
override any stop sequences in the `model_kwargs` attribute.
|
|
Defaults to None.
|
|
run_manager (Optional[CallbackManagerForLLMRun], optional): Callback
|
|
run managers used to process the output. Defaults to None.
|
|
|
|
Returns:
|
|
Iterator[GenerationChunk]: Generator that yields the streamed responses.
|
|
|
|
Yields:
|
|
Iterator[GenerationChunk]: Responses from the model.
|
|
"""
|
|
return self._prepare_input_and_invoke_stream(
|
|
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to Bedrock service model.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = llm("Tell me a joke.")
|
|
"""
|
|
|
|
if self.streaming:
|
|
completion = ""
|
|
for chunk in self._stream(
|
|
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
|
|
):
|
|
completion += chunk.text
|
|
return completion
|
|
|
|
return self._prepare_input_and_invoke(prompt=prompt, stop=stop, **kwargs)
|
|
|
|
def get_num_tokens(self, text: str) -> int:
|
|
if self._model_is_anthropic:
|
|
return get_num_tokens_anthropic(text)
|
|
else:
|
|
return super().get_num_tokens(text)
|
|
|
|
def get_token_ids(self, text: str) -> List[int]:
|
|
if self._model_is_anthropic:
|
|
return get_token_ids_anthropic(text)
|
|
else:
|
|
return super().get_token_ids(text)
|