mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
214 lines
6.7 KiB
Plaintext
214 lines
6.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "181b5b6d",
|
|
"metadata": {},
|
|
"source": [
|
|
"# XML parser\n",
|
|
"This output parser allows users to obtain results from LLM in the popular XML format. \n",
|
|
"\n",
|
|
"Keep in mind that large language models are leaky abstractions! You'll have to use an LLM with sufficient capacity to generate well-formed XML. \n",
|
|
"\n",
|
|
"In the following example we use Claude model (https://docs.anthropic.com/claude/docs) which works really well with XML tags."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "3b10fc55",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.prompts import PromptTemplate\n",
|
|
"from langchain.llms import Anthropic\n",
|
|
"from langchain.output_parsers import XMLOutputParser"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "909161d1",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"/Users/harrisonchase/workplace/langchain/libs/langchain/langchain/llms/anthropic.py:171: UserWarning: This Anthropic LLM is deprecated. Please use `from langchain.chat_models import ChatAnthropic` instead\n",
|
|
" warnings.warn(\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"model = Anthropic(model=\"claude-2\", max_tokens_to_sample=512, temperature=0.1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "da312f86-0d2a-4aef-a09d-1e72bd0ea9b1",
|
|
"metadata": {},
|
|
"source": [
|
|
"Let's start with the simple request to the model."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "b03785af-69fc-40a1-a1be-c04ed6fade70",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" Here is the shortened filmography for Tom Hanks enclosed in <movie> tags:\n",
|
|
"\n",
|
|
"<movie>Splash (1984)</movie>\n",
|
|
"<movie>Big (1988)</movie> \n",
|
|
"<movie>A League of Their Own (1992)</movie>\n",
|
|
"<movie>Sleepless in Seattle (1993)</movie> \n",
|
|
"<movie>Forrest Gump (1994)</movie>\n",
|
|
"<movie>Apollo 13 (1995)</movie>\n",
|
|
"<movie>Toy Story (1995)</movie>\n",
|
|
"<movie>Saving Private Ryan (1998)</movie>\n",
|
|
"<movie>Cast Away (2000)</movie>\n",
|
|
"<movie>The Da Vinci Code (2006)</movie>\n",
|
|
"<movie>Toy Story 3 (2010)</movie>\n",
|
|
"<movie>Captain Phillips (2013)</movie>\n",
|
|
"<movie>Bridge of Spies (2015)</movie>\n",
|
|
"<movie>Toy Story 4 (2019)</movie>\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"actor_query = \"Generate the shortened filmography for Tom Hanks.\"\n",
|
|
"output = model(\n",
|
|
" f\"\"\"\n",
|
|
"\n",
|
|
"Human:\n",
|
|
"{actor_query}\n",
|
|
"Please enclose the movies in <movie></movie> tags\n",
|
|
"Assistant:\n",
|
|
"\"\"\"\n",
|
|
")\n",
|
|
"print(output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4db65781-3d54-4ba6-ae26-5b4ead47a4c8",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now we will use the XMLOutputParser in order to get the structured output."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "87ba8d11",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"{'filmography': [{'movie': [{'title': 'Splash'}, {'year': '1984'}]}, {'movie': [{'title': 'Big'}, {'year': '1988'}]}, {'movie': [{'title': 'A League of Their Own'}, {'year': '1992'}]}, {'movie': [{'title': 'Sleepless in Seattle'}, {'year': '1993'}]}, {'movie': [{'title': 'Forrest Gump'}, {'year': '1994'}]}, {'movie': [{'title': 'Toy Story'}, {'year': '1995'}]}, {'movie': [{'title': 'Apollo 13'}, {'year': '1995'}]}, {'movie': [{'title': 'Saving Private Ryan'}, {'year': '1998'}]}, {'movie': [{'title': 'Cast Away'}, {'year': '2000'}]}, {'movie': [{'title': 'Catch Me If You Can'}, {'year': '2002'}]}, {'movie': [{'title': 'The Polar Express'}, {'year': '2004'}]}, {'movie': [{'title': 'Bridge of Spies'}, {'year': '2015'}]}]}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"parser = XMLOutputParser()\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" template=\"\"\"\n",
|
|
" \n",
|
|
" Human:\n",
|
|
" {query}\n",
|
|
" {format_instructions}\n",
|
|
" Assistant:\"\"\",\n",
|
|
" input_variables=[\"query\"],\n",
|
|
" partial_variables={\"format_instructions\": parser.get_format_instructions()},\n",
|
|
")\n",
|
|
"\n",
|
|
"chain = prompt | model | parser\n",
|
|
"\n",
|
|
"output = chain.invoke({\"query\": actor_query})\n",
|
|
"print(output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "327f5479-77e0-4549-8393-2cd7a286d491",
|
|
"metadata": {},
|
|
"source": [
|
|
"Finally, let's add some tags to tailor the output to our needs."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "b722a235",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"{'movies': [{'actor': [{'name': 'Tom Hanks'}, {'film': [{'name': 'Splash'}, {'genre': 'Comedy'}]}, {'film': [{'name': 'Big'}, {'genre': 'Comedy'}]}, {'film': [{'name': 'A League of Their Own'}, {'genre': 'Comedy'}]}, {'film': [{'name': 'Sleepless in Seattle'}, {'genre': 'Romance'}]}, {'film': [{'name': 'Forrest Gump'}, {'genre': 'Drama'}]}, {'film': [{'name': 'Toy Story'}, {'genre': 'Animation'}]}, {'film': [{'name': 'Apollo 13'}, {'genre': 'Drama'}]}, {'film': [{'name': 'Saving Private Ryan'}, {'genre': 'War'}]}, {'film': [{'name': 'Cast Away'}, {'genre': 'Adventure'}]}, {'film': [{'name': 'The Green Mile'}, {'genre': 'Drama'}]}]}]}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"parser = XMLOutputParser(tags=[\"movies\", \"actor\", \"film\", \"name\", \"genre\"])\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" template=\"\"\"\n",
|
|
" \n",
|
|
" Human:\n",
|
|
" {query}\n",
|
|
" {format_instructions}\n",
|
|
" Assistant:\"\"\",\n",
|
|
" input_variables=[\"query\"],\n",
|
|
" partial_variables={\"format_instructions\": parser.get_format_instructions()},\n",
|
|
")\n",
|
|
"\n",
|
|
"\n",
|
|
"chain = prompt | model | parser\n",
|
|
"\n",
|
|
"output = chain.invoke({\"query\": actor_query})\n",
|
|
"\n",
|
|
"print(output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "808a5df5-b11e-42a0-bd7a-6b95ca0c3eba",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|