mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
f92006de3c
0.2rc migrations - [x] Move memory - [x] Move remaining retrievers - [x] graph_qa chains - [x] some dependency from evaluation code potentially on math utils - [x] Move openapi chain from `langchain.chains.api.openapi` to `langchain_community.chains.openapi` - [x] Migrate `langchain.chains.ernie_functions` to `langchain_community.chains.ernie_functions` - [x] migrate `langchain/chains/llm_requests.py` to `langchain_community.chains.llm_requests` - [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder` -> `langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder` (namespace not ideal, but it needs to be moved to `langchain` to avoid circular deps) - [x] unit tests langchain -- add pytest.mark.community to some unit tests that will stay in langchain - [x] unit tests community -- move unit tests that depend on community to community - [x] mv integration tests that depend on community to community - [x] mypy checks Other todo - [x] Make deprecation warnings not noisy (need to use warn deprecated and check that things are implemented properly) - [x] Update deprecation messages with timeline for code removal (likely we actually won't be removing things until 0.4 release) -- will give people more time to transition their code. - [ ] Add information to deprecation warning to show users how to migrate their code base using langchain-cli - [ ] Remove any unnecessary requirements in langchain (e.g., is SQLALchemy required?) --------- Co-authored-by: Erick Friis <erick@langchain.dev>
107 lines
3.6 KiB
Python
107 lines
3.6 KiB
Python
"""Question answering over a graph."""
|
|
from __future__ import annotations
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain_core.callbacks import CallbackManagerForChainRun
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.prompts import BasePromptTemplate
|
|
from langchain_core.pydantic_v1 import Field
|
|
|
|
from langchain_community.chains.graph_qa.prompts import (
|
|
CYPHER_QA_PROMPT,
|
|
GREMLIN_GENERATION_PROMPT,
|
|
)
|
|
from langchain_community.graphs.hugegraph import HugeGraph
|
|
|
|
|
|
class HugeGraphQAChain(Chain):
|
|
"""Chain for question-answering against a graph by generating gremlin statements.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
graph: HugeGraph = Field(exclude=True)
|
|
gremlin_generation_chain: LLMChain
|
|
qa_chain: LLMChain
|
|
input_key: str = "query" #: :meta private:
|
|
output_key: str = "result" #: :meta private:
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Output keys.
|
|
|
|
:meta private:
|
|
"""
|
|
_output_keys = [self.output_key]
|
|
return _output_keys
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
*,
|
|
qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT,
|
|
gremlin_prompt: BasePromptTemplate = GREMLIN_GENERATION_PROMPT,
|
|
**kwargs: Any,
|
|
) -> HugeGraphQAChain:
|
|
"""Initialize from LLM."""
|
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
|
gremlin_generation_chain = LLMChain(llm=llm, prompt=gremlin_prompt)
|
|
|
|
return cls(
|
|
qa_chain=qa_chain,
|
|
gremlin_generation_chain=gremlin_generation_chain,
|
|
**kwargs,
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, str]:
|
|
"""Generate gremlin statement, use it to look up in db and answer question."""
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
callbacks = _run_manager.get_child()
|
|
question = inputs[self.input_key]
|
|
|
|
generated_gremlin = self.gremlin_generation_chain.run(
|
|
{"question": question, "schema": self.graph.get_schema}, callbacks=callbacks
|
|
)
|
|
|
|
_run_manager.on_text("Generated gremlin:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
generated_gremlin, color="green", end="\n", verbose=self.verbose
|
|
)
|
|
context = self.graph.query(generated_gremlin)
|
|
|
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
str(context), color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
result = self.qa_chain(
|
|
{"question": question, "context": context},
|
|
callbacks=callbacks,
|
|
)
|
|
return {self.output_key: result[self.qa_chain.output_key]}
|