mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
5171c3bcca
Description: This pull request aims to support generating the correct generic relevancy scores for different vector stores by refactoring the relevance score functions and their selection in the base class and subclasses of VectorStore. This is especially relevant with VectorStores that require a distance metric upon initialization. Note many of the current implenetations of `_similarity_search_with_relevance_scores` are not technically correct, as they just return `self.similarity_search_with_score(query, k, **kwargs)` without applying the relevant score function Also includes changes associated with: https://github.com/hwchase17/langchain/pull/6564 and https://github.com/hwchase17/langchain/pull/6494 See more indepth discussion in thread in #6494 Issue: https://github.com/hwchase17/langchain/issues/6526 https://github.com/hwchase17/langchain/issues/6481 https://github.com/hwchase17/langchain/issues/6346 Dependencies: None The changes include: - Properly handling score thresholding in FAISS `similarity_search_with_score_by_vector` for the corresponding distance metric. - Refactoring the `_similarity_search_with_relevance_scores` method in the base class and removing it from the subclasses for incorrectly implemented subclasses. - Adding a `_select_relevance_score_fn` method in the base class and implementing it in the subclasses to select the appropriate relevance score function based on the distance strategy. - Updating the `__init__` methods of the subclasses to set the `relevance_score_fn` attribute. - Removing the `_default_relevance_score_fn` function from the FAISS class and using the base class's `_euclidean_relevance_score_fn` instead. - Adding the `DistanceStrategy` enum to the `utils.py` file and updating the imports in the vector store classes. - Updating the tests to import the `DistanceStrategy` enum from the `utils.py` file. --------- Co-authored-by: Hanit <37485638+hanit-com@users.noreply.github.com>
176 lines
5.7 KiB
Python
176 lines
5.7 KiB
Python
import importlib
|
|
import os
|
|
import time
|
|
import uuid
|
|
import numpy as np
|
|
from typing import List
|
|
|
|
import pinecone
|
|
import pytest
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
from langchain.vectorstores.pinecone import Pinecone
|
|
|
|
index_name = "langchain-test-index" # name of the index
|
|
dimension = 1536 # dimension of the embeddings
|
|
|
|
|
|
def reset_pinecone() -> None:
|
|
assert os.environ.get("PINECONE_API_KEY") is not None
|
|
assert os.environ.get("PINECONE_ENVIRONMENT") is not None
|
|
|
|
import pinecone
|
|
|
|
importlib.reload(pinecone)
|
|
|
|
pinecone.init(
|
|
api_key=os.environ.get("PINECONE_API_KEY"),
|
|
environment=os.environ.get("PINECONE_ENVIRONMENT"),
|
|
)
|
|
|
|
|
|
class TestPinecone:
|
|
index: pinecone.Index
|
|
|
|
@classmethod
|
|
def setup_class(cls) -> None:
|
|
reset_pinecone()
|
|
|
|
cls.index = pinecone.Index(index_name)
|
|
|
|
if index_name in pinecone.list_indexes():
|
|
pinecone.delete_index(index_name)
|
|
|
|
pinecone.create_index(name=index_name, dimension=dimension)
|
|
|
|
# insure the index is empty
|
|
index_stats = cls.index.describe_index_stats()
|
|
assert index_stats["dimension"] == dimension
|
|
assert index_stats["total_vector_count"] == 0
|
|
|
|
@classmethod
|
|
def teardown_class(cls) -> None:
|
|
if index_name in pinecone.list_indexes():
|
|
pinecone.delete_index(index_name)
|
|
pinecone.create_index(index_name, dimension=dimension)
|
|
|
|
reset_pinecone()
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def setup(self) -> None:
|
|
if index_name in pinecone.list_indexes():
|
|
pinecone.delete_index(index_name)
|
|
pinecone.create_index(index_name, dimension=dimension)
|
|
|
|
reset_pinecone()
|
|
|
|
@pytest.mark.vcr()
|
|
def test_from_texts(
|
|
self, texts: List[str], embedding_openai: OpenAIEmbeddings
|
|
) -> None:
|
|
"""Test end to end construction and search."""
|
|
unique_id = uuid.uuid4().hex
|
|
needs = f"foobuu {unique_id} booo"
|
|
texts.insert(0, needs)
|
|
|
|
docsearch = Pinecone.from_texts(
|
|
texts=texts, embedding=embedding_openai, index_name=index_name
|
|
)
|
|
# wait for the index to be ready
|
|
time.sleep(20)
|
|
output = docsearch.similarity_search(unique_id, k=1)
|
|
assert output == [Document(page_content=needs)]
|
|
|
|
@pytest.mark.vcr()
|
|
def test_from_texts_with_metadatas(
|
|
self, texts: List[str], embedding_openai: OpenAIEmbeddings
|
|
) -> None:
|
|
"""Test end to end construction and search."""
|
|
|
|
unique_id = uuid.uuid4().hex
|
|
needs = f"foobuu {unique_id} booo"
|
|
texts.insert(0, needs)
|
|
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = Pinecone.from_texts(
|
|
texts,
|
|
embedding_openai,
|
|
index_name=index_name,
|
|
metadatas=metadatas,
|
|
)
|
|
# wait for the index to be ready
|
|
time.sleep(20)
|
|
output = docsearch.similarity_search(needs, k=1)
|
|
|
|
# TODO: why metadata={"page": 0.0}) instead of {"page": 0}?
|
|
assert output == [Document(page_content=needs, metadata={"page": 0.0})]
|
|
|
|
@pytest.mark.vcr()
|
|
def test_from_texts_with_scores(self, embedding_openai: OpenAIEmbeddings) -> None:
|
|
"""Test end to end construction and search with scores and IDs."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = Pinecone.from_texts(
|
|
texts,
|
|
embedding_openai,
|
|
index_name=index_name,
|
|
metadatas=metadatas,
|
|
)
|
|
# wait for the index to be ready
|
|
time.sleep(20)
|
|
output = docsearch.similarity_search_with_score("foo", k=3)
|
|
docs = [o[0] for o in output]
|
|
scores = [o[1] for o in output]
|
|
sorted_documents = sorted(docs, key=lambda x: x.metadata["page"])
|
|
|
|
# TODO: why metadata={"page": 0.0}) instead of {"page": 0}, etc???
|
|
assert sorted_documents == [
|
|
Document(page_content="foo", metadata={"page": 0.0}),
|
|
Document(page_content="bar", metadata={"page": 1.0}),
|
|
Document(page_content="baz", metadata={"page": 2.0}),
|
|
]
|
|
assert scores[0] > scores[1] > scores[2]
|
|
|
|
def test_add_documents_with_ids(
|
|
self, texts: List[str], embedding_openai: OpenAIEmbeddings
|
|
) -> None:
|
|
ids = [uuid.uuid4().hex for _ in range(len(texts))]
|
|
Pinecone.from_texts(
|
|
texts=texts, ids=ids, embedding=embedding_openai, index_name=index_name
|
|
)
|
|
# wait for the index to be ready
|
|
time.sleep(20)
|
|
index_stats = self.index.describe_index_stats()
|
|
assert index_stats["total_vector_count"] == len(texts)
|
|
|
|
ids_1 = [uuid.uuid4().hex for _ in range(len(texts))]
|
|
Pinecone.from_texts(
|
|
texts=texts,
|
|
ids=ids_1,
|
|
embedding=embedding_openai,
|
|
index_name=index_name,
|
|
)
|
|
# wait for the index to be ready
|
|
time.sleep(20)
|
|
index_stats = self.index.describe_index_stats()
|
|
assert index_stats["total_vector_count"] == len(texts) * 2
|
|
|
|
@pytest.mark.vcr()
|
|
def test_relevance_score_bound(self, embedding_openai: OpenAIEmbeddings) -> None:
|
|
"""Ensures all relevance scores are between 0 and 1."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = Pinecone.from_texts(
|
|
texts,
|
|
embedding_openai,
|
|
index_name=index_name,
|
|
metadatas=metadatas,
|
|
)
|
|
# wait for the index to be ready
|
|
time.sleep(20)
|
|
output = docsearch.similarity_search_with_relevance_scores("foo", k=3)
|
|
assert all(
|
|
(1 >= score or np.isclose(score, 1)) and score >= 0 for _, score in output
|
|
)
|