langchain/templates/neo4j-advanced-rag/neo4j_advanced_rag/chain.py
Tomaz Bratanic 0dbdb8498a
Neo4j Advanced RAG template (#12794)
Todo:

- [x] Docs
2023-11-03 13:22:55 -07:00

52 lines
1.3 KiB
Python

from operator import itemgetter
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import ConfigurableField, RunnableParallel
from neo4j_advanced_rag.retrievers import (
hypothetic_question_vectorstore,
parent_vectorstore,
summary_vectorstore,
typical_rag,
)
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
retriever = typical_rag.as_retriever().configurable_alternatives(
ConfigurableField(id="strategy"),
default_key="typical_rag",
parent_strategy=parent_vectorstore.as_retriever(),
hypothetical_questions=hypothetic_question_vectorstore.as_retriever(),
summary_strategy=summary_vectorstore.as_retriever(),
)
chain = (
RunnableParallel(
{
"context": itemgetter("question") | retriever,
"question": itemgetter("question"),
}
)
| prompt
| model
| StrOutputParser()
)
# Add typing for input
class Question(BaseModel):
question: str
chain = chain.with_types(input_type=Question)