mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
92e6a641fd
- **Description:** Introducing support for LLMs and Chat models running in Azure AI studio and Azure ML using the new deployment mode pay-as-you-go (model as a service). - **Issue:** NA - **Dependencies:** None. - **Tag maintainer:** @prakharg-msft @gdyre - **Twitter handle:** @santiagofacundo Examples added: * [docs/docs/integrations/llms/azure_ml.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_endpoint.ipynb) * [docs/docs/integrations/chat/azureml_chat_endpoint.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_chat_endpoint.ipynb) --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
177 lines
5.8 KiB
Python
177 lines
5.8 KiB
Python
"""Test AzureML Endpoint wrapper."""
|
|
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Dict
|
|
from urllib.request import HTTPError
|
|
|
|
import pytest
|
|
from langchain_core.pydantic_v1 import ValidationError
|
|
|
|
from langchain_community.llms.azureml_endpoint import (
|
|
AzureMLOnlineEndpoint,
|
|
ContentFormatterBase,
|
|
DollyContentFormatter,
|
|
HFContentFormatter,
|
|
OSSContentFormatter,
|
|
)
|
|
from langchain_community.llms.loading import load_llm
|
|
|
|
|
|
def test_gpt2_call() -> None:
|
|
"""Test valid call to GPT2."""
|
|
llm = AzureMLOnlineEndpoint(
|
|
endpoint_api_key=os.getenv("OSS_ENDPOINT_API_KEY"),
|
|
endpoint_url=os.getenv("OSS_ENDPOINT_URL"),
|
|
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
|
|
content_formatter=OSSContentFormatter(),
|
|
)
|
|
output = llm.invoke("Foo")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_hf_call() -> None:
|
|
"""Test valid call to HuggingFace Foundation Model."""
|
|
llm = AzureMLOnlineEndpoint(
|
|
endpoint_api_key=os.getenv("HF_ENDPOINT_API_KEY"),
|
|
endpoint_url=os.getenv("HF_ENDPOINT_URL"),
|
|
deployment_name=os.getenv("HF_DEPLOYMENT_NAME"),
|
|
content_formatter=HFContentFormatter(),
|
|
)
|
|
output = llm.invoke("Foo")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_dolly_call() -> None:
|
|
"""Test valid call to dolly-v2."""
|
|
llm = AzureMLOnlineEndpoint(
|
|
endpoint_api_key=os.getenv("DOLLY_ENDPOINT_API_KEY"),
|
|
endpoint_url=os.getenv("DOLLY_ENDPOINT_URL"),
|
|
deployment_name=os.getenv("DOLLY_DEPLOYMENT_NAME"),
|
|
content_formatter=DollyContentFormatter(),
|
|
)
|
|
output = llm.invoke("Foo")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_custom_formatter() -> None:
|
|
"""Test ability to create a custom content formatter."""
|
|
|
|
class CustomFormatter(ContentFormatterBase):
|
|
content_type = "application/json"
|
|
accepts = "application/json"
|
|
|
|
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
|
input_str = json.dumps(
|
|
{
|
|
"inputs": [prompt],
|
|
"parameters": model_kwargs,
|
|
"options": {"use_cache": False, "wait_for_model": True},
|
|
}
|
|
)
|
|
return input_str.encode("utf-8")
|
|
|
|
def format_response_payload(self, output: bytes) -> str:
|
|
response_json = json.loads(output)
|
|
return response_json[0]["summary_text"]
|
|
|
|
llm = AzureMLOnlineEndpoint(
|
|
endpoint_api_key=os.getenv("BART_ENDPOINT_API_KEY"),
|
|
endpoint_url=os.getenv("BART_ENDPOINT_URL"),
|
|
deployment_name=os.getenv("BART_DEPLOYMENT_NAME"),
|
|
content_formatter=CustomFormatter(),
|
|
)
|
|
output = llm.invoke("Foo")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_missing_content_formatter() -> None:
|
|
"""Test AzureML LLM without a content_formatter attribute"""
|
|
with pytest.raises(AttributeError):
|
|
llm = AzureMLOnlineEndpoint(
|
|
endpoint_api_key=os.getenv("OSS_ENDPOINT_API_KEY"),
|
|
endpoint_url=os.getenv("OSS_ENDPOINT_URL"),
|
|
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
|
|
)
|
|
llm.invoke("Foo")
|
|
|
|
|
|
def test_invalid_request_format() -> None:
|
|
"""Test invalid request format."""
|
|
|
|
class CustomContentFormatter(ContentFormatterBase):
|
|
content_type = "application/json"
|
|
accepts = "application/json"
|
|
|
|
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
|
input_str = json.dumps(
|
|
{
|
|
"incorrect_input": {"input_string": [prompt]},
|
|
"parameters": model_kwargs,
|
|
}
|
|
)
|
|
return str.encode(input_str)
|
|
|
|
def format_response_payload(self, output: bytes) -> str:
|
|
response_json = json.loads(output)
|
|
return response_json[0]["0"]
|
|
|
|
with pytest.raises(HTTPError):
|
|
llm = AzureMLOnlineEndpoint(
|
|
endpoint_api_key=os.getenv("OSS_ENDPOINT_API_KEY"),
|
|
endpoint_url=os.getenv("OSS_ENDPOINT_URL"),
|
|
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
|
|
content_formatter=CustomContentFormatter(),
|
|
)
|
|
llm.invoke("Foo")
|
|
|
|
|
|
def test_incorrect_url() -> None:
|
|
"""Testing AzureML Endpoint for an incorrect URL"""
|
|
with pytest.raises(ValidationError):
|
|
llm = AzureMLOnlineEndpoint(
|
|
endpoint_api_key=os.getenv("OSS_ENDPOINT_API_KEY"),
|
|
endpoint_url="https://endpoint.inference.com",
|
|
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
|
|
content_formatter=OSSContentFormatter(),
|
|
)
|
|
llm.invoke("Foo")
|
|
|
|
|
|
def test_incorrect_api_type() -> None:
|
|
with pytest.raises(ValidationError):
|
|
llm = AzureMLOnlineEndpoint(
|
|
endpoint_api_key=os.getenv("OSS_ENDPOINT_API_KEY"),
|
|
endpoint_url=os.getenv("OSS_ENDPOINT_URL"),
|
|
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
|
|
endpoint_api_type="serverless",
|
|
content_formatter=OSSContentFormatter(),
|
|
)
|
|
llm.invoke("Foo")
|
|
|
|
|
|
def test_incorrect_key() -> None:
|
|
"""Testing AzureML Endpoint for incorrect key"""
|
|
with pytest.raises(HTTPError):
|
|
llm = AzureMLOnlineEndpoint(
|
|
endpoint_api_key="incorrect-key",
|
|
endpoint_url=os.getenv("OSS_ENDPOINT_URL"),
|
|
deployment_name=os.getenv("OSS_DEPLOYMENT_NAME"),
|
|
content_formatter=OSSContentFormatter(),
|
|
)
|
|
llm.invoke("Foo")
|
|
|
|
|
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
|
"""Test saving/loading an AzureML Foundation Model LLM."""
|
|
|
|
save_llm = AzureMLOnlineEndpoint(
|
|
deployment_name="databricks-dolly-v2-12b-4",
|
|
model_kwargs={"temperature": 0.03, "top_p": 0.4, "max_tokens": 200},
|
|
)
|
|
save_llm.save(file_path=tmp_path / "azureml.yaml")
|
|
loaded_llm = load_llm(tmp_path / "azureml.yaml")
|
|
|
|
assert loaded_llm == save_llm
|