mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
298 lines
11 KiB
Python
298 lines
11 KiB
Python
"""Agent for working with pandas objects."""
|
|
import warnings
|
|
from typing import Any, Dict, List, Literal, Optional, Sequence, Union
|
|
|
|
from langchain.agents import AgentType, create_openai_tools_agent, create_react_agent
|
|
from langchain.agents.agent import (
|
|
AgentExecutor,
|
|
BaseMultiActionAgent,
|
|
BaseSingleActionAgent,
|
|
RunnableAgent,
|
|
RunnableMultiActionAgent,
|
|
)
|
|
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
|
|
from langchain.agents.openai_functions_agent.base import (
|
|
OpenAIFunctionsAgent,
|
|
create_openai_functions_agent,
|
|
)
|
|
from langchain_core.callbacks import BaseCallbackManager
|
|
from langchain_core.language_models import LanguageModelLike
|
|
from langchain_core.messages import SystemMessage
|
|
from langchain_core.prompts import (
|
|
BasePromptTemplate,
|
|
ChatPromptTemplate,
|
|
PromptTemplate,
|
|
)
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils.interactive_env import is_interactive_env
|
|
|
|
from langchain_experimental.agents.agent_toolkits.pandas.prompt import (
|
|
FUNCTIONS_WITH_DF,
|
|
FUNCTIONS_WITH_MULTI_DF,
|
|
MULTI_DF_PREFIX,
|
|
MULTI_DF_PREFIX_FUNCTIONS,
|
|
PREFIX,
|
|
PREFIX_FUNCTIONS,
|
|
SUFFIX_NO_DF,
|
|
SUFFIX_WITH_DF,
|
|
SUFFIX_WITH_MULTI_DF,
|
|
)
|
|
from langchain_experimental.tools.python.tool import PythonAstREPLTool
|
|
|
|
|
|
def _get_multi_prompt(
|
|
dfs: List[Any],
|
|
*,
|
|
prefix: Optional[str] = None,
|
|
suffix: Optional[str] = None,
|
|
include_df_in_prompt: Optional[bool] = True,
|
|
number_of_head_rows: int = 5,
|
|
) -> BasePromptTemplate:
|
|
if suffix is not None:
|
|
suffix_to_use = suffix
|
|
elif include_df_in_prompt:
|
|
suffix_to_use = SUFFIX_WITH_MULTI_DF
|
|
else:
|
|
suffix_to_use = SUFFIX_NO_DF
|
|
prefix = prefix if prefix is not None else MULTI_DF_PREFIX
|
|
|
|
template = "\n\n".join([prefix, "{tools}", FORMAT_INSTRUCTIONS, suffix_to_use])
|
|
prompt = PromptTemplate.from_template(template)
|
|
partial_prompt = prompt.partial()
|
|
if "dfs_head" in partial_prompt.input_variables:
|
|
dfs_head = "\n\n".join([d.head(number_of_head_rows).to_markdown() for d in dfs])
|
|
partial_prompt = partial_prompt.partial(dfs_head=dfs_head)
|
|
if "num_dfs" in partial_prompt.input_variables:
|
|
partial_prompt = partial_prompt.partial(num_dfs=str(len(dfs)))
|
|
return partial_prompt
|
|
|
|
|
|
def _get_single_prompt(
|
|
df: Any,
|
|
*,
|
|
prefix: Optional[str] = None,
|
|
suffix: Optional[str] = None,
|
|
include_df_in_prompt: Optional[bool] = True,
|
|
number_of_head_rows: int = 5,
|
|
) -> BasePromptTemplate:
|
|
if suffix is not None:
|
|
suffix_to_use = suffix
|
|
elif include_df_in_prompt:
|
|
suffix_to_use = SUFFIX_WITH_DF
|
|
else:
|
|
suffix_to_use = SUFFIX_NO_DF
|
|
prefix = prefix if prefix is not None else PREFIX
|
|
|
|
template = "\n\n".join([prefix, "{tools}", FORMAT_INSTRUCTIONS, suffix_to_use])
|
|
prompt = PromptTemplate.from_template(template)
|
|
|
|
partial_prompt = prompt.partial()
|
|
if "df_head" in partial_prompt.input_variables:
|
|
df_head = str(df.head(number_of_head_rows).to_markdown())
|
|
partial_prompt = partial_prompt.partial(df_head=df_head)
|
|
return partial_prompt
|
|
|
|
|
|
def _get_prompt(df: Any, **kwargs: Any) -> BasePromptTemplate:
|
|
return (
|
|
_get_multi_prompt(df, **kwargs)
|
|
if isinstance(df, list)
|
|
else _get_single_prompt(df, **kwargs)
|
|
)
|
|
|
|
|
|
def _get_functions_single_prompt(
|
|
df: Any,
|
|
*,
|
|
prefix: Optional[str] = None,
|
|
suffix: str = "",
|
|
include_df_in_prompt: Optional[bool] = True,
|
|
number_of_head_rows: int = 5,
|
|
) -> ChatPromptTemplate:
|
|
if include_df_in_prompt:
|
|
df_head = str(df.head(number_of_head_rows).to_markdown())
|
|
suffix = (suffix or FUNCTIONS_WITH_DF).format(df_head=df_head)
|
|
prefix = prefix if prefix is not None else PREFIX_FUNCTIONS
|
|
system_message = SystemMessage(content=prefix + suffix)
|
|
prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message)
|
|
return prompt
|
|
|
|
|
|
def _get_functions_multi_prompt(
|
|
dfs: Any,
|
|
*,
|
|
prefix: str = "",
|
|
suffix: str = "",
|
|
include_df_in_prompt: Optional[bool] = True,
|
|
number_of_head_rows: int = 5,
|
|
) -> ChatPromptTemplate:
|
|
if include_df_in_prompt:
|
|
dfs_head = "\n\n".join([d.head(number_of_head_rows).to_markdown() for d in dfs])
|
|
suffix = (suffix or FUNCTIONS_WITH_MULTI_DF).format(dfs_head=dfs_head)
|
|
prefix = (prefix or MULTI_DF_PREFIX_FUNCTIONS).format(num_dfs=str(len(dfs)))
|
|
system_message = SystemMessage(content=prefix + suffix)
|
|
prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message)
|
|
return prompt
|
|
|
|
|
|
def _get_functions_prompt(df: Any, **kwargs: Any) -> ChatPromptTemplate:
|
|
return (
|
|
_get_functions_multi_prompt(df, **kwargs)
|
|
if isinstance(df, list)
|
|
else _get_functions_single_prompt(df, **kwargs)
|
|
)
|
|
|
|
|
|
def create_pandas_dataframe_agent(
|
|
llm: LanguageModelLike,
|
|
df: Any,
|
|
agent_type: Union[
|
|
AgentType, Literal["openai-tools"]
|
|
] = AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
|
callback_manager: Optional[BaseCallbackManager] = None,
|
|
prefix: Optional[str] = None,
|
|
suffix: Optional[str] = None,
|
|
input_variables: Optional[List[str]] = None,
|
|
verbose: bool = False,
|
|
return_intermediate_steps: bool = False,
|
|
max_iterations: Optional[int] = 15,
|
|
max_execution_time: Optional[float] = None,
|
|
early_stopping_method: str = "force",
|
|
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
|
|
include_df_in_prompt: Optional[bool] = True,
|
|
number_of_head_rows: int = 5,
|
|
extra_tools: Sequence[BaseTool] = (),
|
|
**kwargs: Any,
|
|
) -> AgentExecutor:
|
|
"""Construct a Pandas agent from an LLM and dataframe(s).
|
|
|
|
Args:
|
|
llm: Language model to use for the agent.
|
|
df: Pandas dataframe or list of Pandas dataframes.
|
|
agent_type: One of "openai-tools", "openai-functions", or
|
|
"zero-shot-react-description". Defaults to "zero-shot-react-description".
|
|
"openai-tools" is recommended over "openai-functions".
|
|
callback_manager: DEPRECATED. Pass "callbacks" key into 'agent_executor_kwargs'
|
|
instead to pass constructor callbacks to AgentExecutor.
|
|
prefix: Prompt prefix string.
|
|
suffix: Prompt suffix string.
|
|
input_variables: DEPRECATED. Input variables automatically inferred from
|
|
constructed prompt.
|
|
verbose: AgentExecutor verbosity.
|
|
return_intermediate_steps: Passed to AgentExecutor init.
|
|
max_iterations: Passed to AgentExecutor init.
|
|
max_execution_time: Passed to AgentExecutor init.
|
|
early_stopping_method: Passed to AgentExecutor init.
|
|
agent_executor_kwargs: Arbitrary additional AgentExecutor args.
|
|
include_df_in_prompt: Whether to include the first number_of_head_rows in the
|
|
prompt. Must be None if suffix is not None.
|
|
number_of_head_rows: Number of initial rows to include in prompt if
|
|
include_df_in_prompt is True.
|
|
extra_tools: Additional tools to give to agent on top of a PythonAstREPLTool.
|
|
**kwargs: DEPRECATED. Not used, kept for backwards compatibility.
|
|
|
|
Returns:
|
|
An AgentExecutor with the specified agent_type agent and access to
|
|
a PythonAstREPLTool with the DataFrame(s) and any user-provided extra_tools.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
from langchain_experimental.agents import create_pandas_dataframe_agent
|
|
import pandas as pd
|
|
|
|
df = pd.read_csv("titanic.csv")
|
|
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
|
|
agent_executor = create_pandas_dataframe_agent(
|
|
llm,
|
|
df,
|
|
agent_type="openai-tools",
|
|
verbose=True
|
|
)
|
|
|
|
""" # noqa: E501
|
|
try:
|
|
import pandas as pd
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"pandas package not found, please install with `pip install pandas`"
|
|
) from e
|
|
|
|
if is_interactive_env():
|
|
pd.set_option("display.max_columns", None)
|
|
|
|
for _df in df if isinstance(df, list) else [df]:
|
|
if not isinstance(_df, pd.DataFrame):
|
|
raise ValueError(f"Expected pandas DataFrame, got {type(_df)}")
|
|
|
|
if input_variables:
|
|
kwargs = kwargs or {}
|
|
kwargs["input_variables"] = input_variables
|
|
if kwargs:
|
|
warnings.warn(
|
|
f"Received additional kwargs {kwargs} which are no longer supported."
|
|
)
|
|
|
|
df_locals = {}
|
|
if isinstance(df, list):
|
|
for i, dataframe in enumerate(df):
|
|
df_locals[f"df{i + 1}"] = dataframe
|
|
else:
|
|
df_locals["df"] = df
|
|
tools = [PythonAstREPLTool(locals=df_locals)] + list(extra_tools)
|
|
|
|
if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION:
|
|
if include_df_in_prompt is not None and suffix is not None:
|
|
raise ValueError(
|
|
"If suffix is specified, include_df_in_prompt should not be."
|
|
)
|
|
prompt = _get_prompt(
|
|
df,
|
|
prefix=prefix,
|
|
suffix=suffix,
|
|
include_df_in_prompt=include_df_in_prompt,
|
|
number_of_head_rows=number_of_head_rows,
|
|
)
|
|
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] = RunnableAgent(
|
|
runnable=create_react_agent(llm, tools, prompt), # type: ignore
|
|
input_keys_arg=["input"],
|
|
return_keys_arg=["output"],
|
|
)
|
|
elif agent_type in (AgentType.OPENAI_FUNCTIONS, "openai-tools"):
|
|
prompt = _get_functions_prompt(
|
|
df,
|
|
prefix=prefix,
|
|
suffix=suffix,
|
|
include_df_in_prompt=include_df_in_prompt,
|
|
number_of_head_rows=number_of_head_rows,
|
|
)
|
|
if agent_type == AgentType.OPENAI_FUNCTIONS:
|
|
agent = RunnableAgent(
|
|
runnable=create_openai_functions_agent(llm, tools, prompt), # type: ignore
|
|
input_keys_arg=["input"],
|
|
return_keys_arg=["output"],
|
|
)
|
|
else:
|
|
agent = RunnableMultiActionAgent(
|
|
runnable=create_openai_tools_agent(llm, tools, prompt), # type: ignore
|
|
input_keys_arg=["input"],
|
|
return_keys_arg=["output"],
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Agent type {agent_type} not supported at the moment. Must be one of "
|
|
"'openai-tools', 'openai-functions', or 'zero-shot-react-description'."
|
|
)
|
|
return AgentExecutor(
|
|
agent=agent,
|
|
tools=tools,
|
|
callback_manager=callback_manager,
|
|
verbose=verbose,
|
|
return_intermediate_steps=return_intermediate_steps,
|
|
max_iterations=max_iterations,
|
|
max_execution_time=max_execution_time,
|
|
early_stopping_method=early_stopping_method,
|
|
**(agent_executor_kwargs or {}),
|
|
)
|