mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
46542dc774
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
40 lines
1.1 KiB
Python
40 lines
1.1 KiB
Python
"""Test math utility functions."""
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
|
|
from langchain.math_utils import cosine_similarity
|
|
|
|
|
|
def test_cosine_similarity_zero() -> None:
|
|
X = np.zeros((3, 3))
|
|
Y = np.random.random((3, 3))
|
|
expected = np.zeros((3, 3))
|
|
actual = cosine_similarity(X, Y)
|
|
assert np.allclose(expected, actual)
|
|
|
|
|
|
def test_cosine_similarity_identity() -> None:
|
|
X = np.random.random((4, 4))
|
|
expected = np.ones(4)
|
|
actual = np.diag(cosine_similarity(X, X))
|
|
assert np.allclose(expected, actual)
|
|
|
|
|
|
def test_cosine_similarity_empty() -> None:
|
|
empty_list: List[List[float]] = []
|
|
assert len(cosine_similarity(empty_list, empty_list)) == 0
|
|
assert len(cosine_similarity(empty_list, np.random.random((3, 3)))) == 0
|
|
|
|
|
|
def test_cosine_similarity() -> None:
|
|
X = [[1.0, 2.0, 3.0], [0.0, 1.0, 0.0], [1.0, 2.0, 0.0]]
|
|
Y = [[0.5, 1.0, 1.5], [1.0, 0.0, 0.0], [2.0, 5.0, 2.0]]
|
|
expected = [
|
|
[1.0, 0.26726124, 0.83743579],
|
|
[0.53452248, 0.0, 0.87038828],
|
|
[0.5976143, 0.4472136, 0.93419873],
|
|
]
|
|
actual = cosine_similarity(X, Y)
|
|
assert np.allclose(expected, actual)
|