langchain/templates/xml-agent/xml_agent/agent.py
Bagatur 480626dc99
docs, community[patch], experimental[patch], langchain[patch], cli[pa… (#15412)
…tch]: import models from community

ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
2024-01-02 15:32:16 -05:00

54 lines
1.5 KiB
Python

from typing import List, Tuple
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_xml
from langchain.schema import AIMessage, HumanMessage
from langchain.tools import DuckDuckGoSearchRun
from langchain.tools.render import render_text_description
from langchain_community.chat_models import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel, Field
from xml_agent.prompts import conversational_prompt, parse_output
def _format_chat_history(chat_history: List[Tuple[str, str]]):
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
model = ChatAnthropic(model="claude-2")
tools = [DuckDuckGoSearchRun()]
prompt = conversational_prompt.partial(
tools=render_text_description(tools),
tool_names=", ".join([t.name for t in tools]),
)
llm_with_stop = model.bind(stop=["</tool_input>"])
agent = (
{
"question": lambda x: x["question"],
"agent_scratchpad": lambda x: format_xml(x["intermediate_steps"]),
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
}
| prompt
| llm_with_stop
| parse_output
)
class AgentInput(BaseModel):
question: str
chat_history: List[Tuple[str, str]] = Field(..., extra={"widget": {"type": "chat"}})
agent_executor = AgentExecutor(
agent=agent, tools=tools, verbose=True, handle_parsing_errors=True
).with_types(input_type=AgentInput)
agent_executor = agent_executor | (lambda x: x["output"])