langchain/templates/chain-of-note-wiki/chain_of_note_wiki/chain.py
Bagatur 480626dc99
docs, community[patch], experimental[patch], langchain[patch], cli[pa… (#15412)
…tch]: import models from community

ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
2024-01-02 15:32:16 -05:00

34 lines
825 B
Python

from langchain import hub
from langchain.schema import StrOutputParser
from langchain.utilities import WikipediaAPIWrapper
from langchain_community.chat_models import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
class Question(BaseModel):
__root__: str
wiki = WikipediaAPIWrapper(top_k_results=5)
prompt = hub.pull("bagatur/chain-of-note-wiki")
llm = ChatAnthropic(model="claude-2")
def format_docs(docs):
return "\n\n".join(
f"Wikipedia {i+1}:\n{doc.page_content}" for i, doc in enumerate(docs)
)
chain = (
{
"passages": RunnableLambda(wiki.load) | format_docs,
"question": RunnablePassthrough(),
}
| prompt
| llm
| StrOutputParser()
).with_types(input_type=Question)