langchain/docs/modules/models/text_embedding/examples/sentence_transformers.ipynb
Zander Chase d6d697a41b
Sentence Transformers Aliasing (#3541)
The sentence transformers was a dup of the HF one. 

This is a breaking change (model_name vs. model) for anyone using
`SentenceTransformerEmbeddings(model="some/nondefault/model")`, but
since it was landed only this week it seems better to do this now rather
than doing a wrapper.
2023-04-25 23:29:20 -07:00

123 lines
3.0 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "ed47bb62",
"metadata": {},
"source": [
"# Sentence Transformers Embeddings\n",
"\n",
"[SentenceTransformers](https://www.sbert.net/) embeddings are called using the `HuggingFaceEmbeddings` integration. We have also added an alias for `SentenceTransformerEmbeddings` for users who are more familiar with directly using that package.\n",
"\n",
"SentenceTransformers is a python package that can generate text and image embeddings, originating from [Sentence-BERT](https://arxiv.org/abs/1908.10084)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "06c9f47d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install sentence_transformers > /dev/null"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "861521a9",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ff9be586",
"metadata": {},
"outputs": [],
"source": [
"embeddings = HuggingFaceEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n",
"# Equivalent to SentenceTransformerEmbeddings(model_name=\"all-MiniLM-L6-v2\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d0a98ae9",
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5d6c682b",
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "bb5e74c0",
"metadata": {},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text, \"This is not a test document.\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaad49f8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
},
"vscode": {
"interpreter": {
"hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}