mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
9992beaff9
**Description:** Added a few additional arguments to the whisper parser, which can be consumed by the underlying API. The prompt is especially important to fine-tune transcriptions. --------- Co-authored-by: Roi Perlman <roi@fivesigmalabs.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
484 lines
16 KiB
Python
484 lines
16 KiB
Python
import logging
|
|
import os
|
|
import time
|
|
from typing import Any, Dict, Iterator, Literal, Optional, Tuple, Union
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_community.document_loaders.base import BaseBlobParser
|
|
from langchain_community.document_loaders.blob_loaders import Blob
|
|
from langchain_community.utils.openai import is_openai_v1
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class OpenAIWhisperParser(BaseBlobParser):
|
|
"""Transcribe and parse audio files.
|
|
|
|
Audio transcription is with OpenAI Whisper model.
|
|
|
|
Args:
|
|
api_key: OpenAI API key
|
|
chunk_duration_threshold: minimum duration of a chunk in seconds
|
|
NOTE: According to the OpenAI API, the chunk duration should be at least 0.1
|
|
seconds. If the chunk duration is less or equal than the threshold,
|
|
it will be skipped.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
api_key: Optional[str] = None,
|
|
*,
|
|
chunk_duration_threshold: float = 0.1,
|
|
base_url: Optional[str] = None,
|
|
language: Union[str, None] = None,
|
|
prompt: Union[str, None] = None,
|
|
response_format: Union[
|
|
Literal["json", "text", "srt", "verbose_json", "vtt"], None
|
|
] = None,
|
|
temperature: Union[float, None] = None,
|
|
):
|
|
self.api_key = api_key
|
|
self.chunk_duration_threshold = chunk_duration_threshold
|
|
self.base_url = (
|
|
base_url if base_url is not None else os.environ.get("OPENAI_API_BASE")
|
|
)
|
|
self.language = language
|
|
self.prompt = prompt
|
|
self.response_format = response_format
|
|
self.temperature = temperature
|
|
|
|
@property
|
|
def _create_params(self) -> Dict[str, Any]:
|
|
params = {
|
|
"language": self.language,
|
|
"prompt": self.prompt,
|
|
"response_format": self.response_format,
|
|
"temperature": self.temperature,
|
|
}
|
|
return {k: v for k, v in params.items() if v is not None}
|
|
|
|
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
|
"""Lazily parse the blob."""
|
|
|
|
import io
|
|
|
|
try:
|
|
import openai
|
|
except ImportError:
|
|
raise ImportError(
|
|
"openai package not found, please install it with "
|
|
"`pip install openai`"
|
|
)
|
|
try:
|
|
from pydub import AudioSegment
|
|
except ImportError:
|
|
raise ImportError(
|
|
"pydub package not found, please install it with " "`pip install pydub`"
|
|
)
|
|
|
|
if is_openai_v1():
|
|
# api_key optional, defaults to `os.environ['OPENAI_API_KEY']`
|
|
client = openai.OpenAI(api_key=self.api_key, base_url=self.base_url)
|
|
else:
|
|
# Set the API key if provided
|
|
if self.api_key:
|
|
openai.api_key = self.api_key
|
|
if self.base_url:
|
|
openai.base_url = self.base_url
|
|
|
|
# Audio file from disk
|
|
audio = AudioSegment.from_file(blob.path)
|
|
|
|
# Define the duration of each chunk in minutes
|
|
# Need to meet 25MB size limit for Whisper API
|
|
chunk_duration = 20
|
|
chunk_duration_ms = chunk_duration * 60 * 1000
|
|
|
|
# Split the audio into chunk_duration_ms chunks
|
|
for split_number, i in enumerate(range(0, len(audio), chunk_duration_ms)):
|
|
# Audio chunk
|
|
chunk = audio[i : i + chunk_duration_ms]
|
|
# Skip chunks that are too short to transcribe
|
|
if chunk.duration_seconds <= self.chunk_duration_threshold:
|
|
continue
|
|
file_obj = io.BytesIO(chunk.export(format="mp3").read())
|
|
if blob.source is not None:
|
|
file_obj.name = blob.source + f"_part_{split_number}.mp3"
|
|
else:
|
|
file_obj.name = f"part_{split_number}.mp3"
|
|
|
|
# Transcribe
|
|
print(f"Transcribing part {split_number + 1}!") # noqa: T201
|
|
attempts = 0
|
|
while attempts < 3:
|
|
try:
|
|
if is_openai_v1():
|
|
transcript = client.audio.transcriptions.create(
|
|
model="whisper-1", file=file_obj, **self._create_params
|
|
)
|
|
else:
|
|
transcript = openai.Audio.transcribe("whisper-1", file_obj)
|
|
break
|
|
except Exception as e:
|
|
attempts += 1
|
|
print(f"Attempt {attempts} failed. Exception: {str(e)}") # noqa: T201
|
|
time.sleep(5)
|
|
else:
|
|
print("Failed to transcribe after 3 attempts.") # noqa: T201
|
|
continue
|
|
|
|
yield Document(
|
|
page_content=transcript.text,
|
|
metadata={"source": blob.source, "chunk": split_number},
|
|
)
|
|
|
|
|
|
class OpenAIWhisperParserLocal(BaseBlobParser):
|
|
"""Transcribe and parse audio files with OpenAI Whisper model.
|
|
|
|
Audio transcription with OpenAI Whisper model locally from transformers.
|
|
|
|
Parameters:
|
|
device - device to use
|
|
NOTE: By default uses the gpu if available,
|
|
if you want to use cpu, please set device = "cpu"
|
|
lang_model - whisper model to use, for example "openai/whisper-medium"
|
|
forced_decoder_ids - id states for decoder in multilanguage model,
|
|
usage example:
|
|
from transformers import WhisperProcessor
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
|
|
forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="french",
|
|
task="transcribe")
|
|
forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="french",
|
|
task="translate")
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
device: str = "0",
|
|
lang_model: Optional[str] = None,
|
|
batch_size: int = 8,
|
|
chunk_length: int = 30,
|
|
forced_decoder_ids: Optional[Tuple[Dict]] = None,
|
|
):
|
|
"""Initialize the parser.
|
|
|
|
Args:
|
|
device: device to use.
|
|
lang_model: whisper model to use, for example "openai/whisper-medium".
|
|
Defaults to None.
|
|
forced_decoder_ids: id states for decoder in a multilanguage model.
|
|
Defaults to None.
|
|
batch_size: batch size used for decoding
|
|
Defaults to 8.
|
|
chunk_length: chunk length used during inference.
|
|
Defaults to 30s.
|
|
"""
|
|
try:
|
|
from transformers import pipeline
|
|
except ImportError:
|
|
raise ImportError(
|
|
"transformers package not found, please install it with "
|
|
"`pip install transformers`"
|
|
)
|
|
try:
|
|
import torch
|
|
except ImportError:
|
|
raise ImportError(
|
|
"torch package not found, please install it with " "`pip install torch`"
|
|
)
|
|
|
|
# Determine the device to use
|
|
if device == "cpu":
|
|
self.device = "cpu"
|
|
else:
|
|
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
if self.device == "cpu":
|
|
default_model = "openai/whisper-base"
|
|
self.lang_model = lang_model if lang_model else default_model
|
|
else:
|
|
# Set the language model based on the device and available memory
|
|
mem = torch.cuda.get_device_properties(self.device).total_memory / (1024**2)
|
|
if mem < 5000:
|
|
rec_model = "openai/whisper-base"
|
|
elif mem < 7000:
|
|
rec_model = "openai/whisper-small"
|
|
elif mem < 12000:
|
|
rec_model = "openai/whisper-medium"
|
|
else:
|
|
rec_model = "openai/whisper-large"
|
|
self.lang_model = lang_model if lang_model else rec_model
|
|
|
|
print("Using the following model: ", self.lang_model) # noqa: T201
|
|
|
|
self.batch_size = batch_size
|
|
|
|
# load model for inference
|
|
self.pipe = pipeline(
|
|
"automatic-speech-recognition",
|
|
model=self.lang_model,
|
|
chunk_length_s=chunk_length,
|
|
device=self.device,
|
|
)
|
|
if forced_decoder_ids is not None:
|
|
try:
|
|
self.pipe.model.config.forced_decoder_ids = forced_decoder_ids
|
|
except Exception as exception_text:
|
|
logger.info(
|
|
"Unable to set forced_decoder_ids parameter for whisper model"
|
|
f"Text of exception: {exception_text}"
|
|
"Therefore whisper model will use default mode for decoder"
|
|
)
|
|
|
|
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
|
"""Lazily parse the blob."""
|
|
|
|
import io
|
|
|
|
try:
|
|
from pydub import AudioSegment
|
|
except ImportError:
|
|
raise ImportError(
|
|
"pydub package not found, please install it with `pip install pydub`"
|
|
)
|
|
|
|
try:
|
|
import librosa
|
|
except ImportError:
|
|
raise ImportError(
|
|
"librosa package not found, please install it with "
|
|
"`pip install librosa`"
|
|
)
|
|
|
|
# Audio file from disk
|
|
audio = AudioSegment.from_file(blob.path)
|
|
|
|
file_obj = io.BytesIO(audio.export(format="mp3").read())
|
|
|
|
# Transcribe
|
|
print(f"Transcribing part {blob.path}!") # noqa: T201
|
|
|
|
y, sr = librosa.load(file_obj, sr=16000)
|
|
|
|
prediction = self.pipe(y.copy(), batch_size=self.batch_size)["text"]
|
|
|
|
yield Document(
|
|
page_content=prediction,
|
|
metadata={"source": blob.source},
|
|
)
|
|
|
|
|
|
class YandexSTTParser(BaseBlobParser):
|
|
"""Transcribe and parse audio files.
|
|
Audio transcription is with OpenAI Whisper model."""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
api_key: Optional[str] = None,
|
|
iam_token: Optional[str] = None,
|
|
model: str = "general",
|
|
language: str = "auto",
|
|
):
|
|
"""Initialize the parser.
|
|
|
|
Args:
|
|
api_key: API key for a service account
|
|
with the `ai.speechkit-stt.user` role.
|
|
iam_token: IAM token for a service account
|
|
with the `ai.speechkit-stt.user` role.
|
|
model: Recognition model name.
|
|
Defaults to general.
|
|
language: The language in ISO 639-1 format.
|
|
Defaults to automatic language recognition.
|
|
Either `api_key` or `iam_token` must be provided, but not both.
|
|
"""
|
|
if (api_key is None) == (iam_token is None):
|
|
raise ValueError(
|
|
"Either 'api_key' or 'iam_token' must be provided, but not both."
|
|
)
|
|
self.api_key = api_key
|
|
self.iam_token = iam_token
|
|
self.model = model
|
|
self.language = language
|
|
|
|
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
|
"""Lazily parse the blob."""
|
|
|
|
try:
|
|
from speechkit import configure_credentials, creds, model_repository
|
|
from speechkit.stt import AudioProcessingType
|
|
except ImportError:
|
|
raise ImportError(
|
|
"yandex-speechkit package not found, please install it with "
|
|
"`pip install yandex-speechkit`"
|
|
)
|
|
try:
|
|
from pydub import AudioSegment
|
|
except ImportError:
|
|
raise ImportError(
|
|
"pydub package not found, please install it with " "`pip install pydub`"
|
|
)
|
|
|
|
if self.api_key:
|
|
configure_credentials(
|
|
yandex_credentials=creds.YandexCredentials(api_key=self.api_key)
|
|
)
|
|
else:
|
|
configure_credentials(
|
|
yandex_credentials=creds.YandexCredentials(iam_token=self.iam_token)
|
|
)
|
|
|
|
audio = AudioSegment.from_file(blob.path)
|
|
|
|
model = model_repository.recognition_model()
|
|
|
|
model.model = self.model
|
|
model.language = self.language
|
|
model.audio_processing_type = AudioProcessingType.Full
|
|
|
|
result = model.transcribe(audio)
|
|
|
|
for res in result:
|
|
yield Document(
|
|
page_content=res.normalized_text,
|
|
metadata={"source": blob.source},
|
|
)
|
|
|
|
|
|
class FasterWhisperParser(BaseBlobParser):
|
|
"""Transcribe and parse audio files with faster-whisper.
|
|
|
|
faster-whisper is a reimplementation of OpenAI's Whisper model using CTranslate2,
|
|
which is up to 4 times faster than openai/whisper for the same accuracy while using
|
|
less memory. The efficiency can be further improved with 8-bit quantization on both
|
|
CPU and GPU.
|
|
|
|
It can automatically detect the following 14 languages and transcribe the text
|
|
into their respective languages: en, zh, fr, de, ja, ko, ru, es, th, it, pt, vi,
|
|
ar, tr.
|
|
|
|
The gitbub repository for faster-whisper is :
|
|
https://github.com/SYSTRAN/faster-whisper
|
|
|
|
Example: Load a YouTube video and transcribe the video speech into a document.
|
|
.. code-block:: python
|
|
|
|
from langchain.document_loaders.generic import GenericLoader
|
|
from langchain_community.document_loaders.parsers.audio
|
|
import FasterWhisperParser
|
|
from langchain.document_loaders.blob_loaders.youtube_audio
|
|
import YoutubeAudioLoader
|
|
|
|
|
|
url="https://www.youtube.com/watch?v=your_video"
|
|
save_dir="your_dir/"
|
|
loader = GenericLoader(
|
|
YoutubeAudioLoader([url],save_dir),
|
|
FasterWhisperParser()
|
|
)
|
|
docs = loader.load()
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: Optional[str] = "cuda",
|
|
model_size: Optional[str] = None,
|
|
):
|
|
"""Initialize the parser.
|
|
|
|
Args:
|
|
device: It can be "cuda" or "cpu" based on the available device.
|
|
model_size: There are four model sizes to choose from: "base", "small",
|
|
"medium", and "large-v3", based on the available GPU memory.
|
|
"""
|
|
try:
|
|
import torch
|
|
except ImportError:
|
|
raise ImportError(
|
|
"torch package not found, please install it with `pip install torch`"
|
|
)
|
|
|
|
# Determine the device to use
|
|
if device == "cpu":
|
|
self.device = "cpu"
|
|
else:
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
# Determine the model_size
|
|
if self.device == "cpu":
|
|
self.model_size = "base"
|
|
else:
|
|
# Set the model_size based on the available memory
|
|
mem = torch.cuda.get_device_properties(self.device).total_memory / (1024**2)
|
|
if mem < 1000:
|
|
self.model_size = "base"
|
|
elif mem < 3000:
|
|
self.model_size = "small"
|
|
elif mem < 5000:
|
|
self.model_size = "medium"
|
|
else:
|
|
self.model_size = "large-v3"
|
|
# If the user has assigned a model size, then use the assigned size
|
|
if model_size is not None:
|
|
if model_size in ["base", "small", "medium", "large-v3"]:
|
|
self.model_size = model_size
|
|
|
|
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
|
"""Lazily parse the blob."""
|
|
|
|
import io
|
|
|
|
try:
|
|
from pydub import AudioSegment
|
|
except ImportError:
|
|
raise ImportError(
|
|
"pydub package not found, please install it with `pip install pydub`"
|
|
)
|
|
|
|
try:
|
|
from faster_whisper import WhisperModel
|
|
except ImportError:
|
|
raise ImportError(
|
|
"faster_whisper package not found, please install it with "
|
|
"`pip install faster-whisper`"
|
|
)
|
|
|
|
# get the audio
|
|
if isinstance(blob.data, bytes):
|
|
# blob contains the audio
|
|
audio = AudioSegment.from_file(io.BytesIO(blob.data))
|
|
elif blob.data is None and blob.path:
|
|
# Audio file from disk
|
|
audio = AudioSegment.from_file(blob.path)
|
|
else:
|
|
raise ValueError("Unable to get audio from blob")
|
|
|
|
file_obj = io.BytesIO(audio.export(format="mp3").read())
|
|
|
|
# Transcribe
|
|
model = WhisperModel(
|
|
self.model_size, device=self.device, compute_type="float16"
|
|
)
|
|
|
|
segments, info = model.transcribe(file_obj, beam_size=5)
|
|
|
|
for segment in segments:
|
|
yield Document(
|
|
page_content=segment.text,
|
|
metadata={
|
|
"source": blob.source,
|
|
"timestamps": "[%.2fs -> %.2fs]" % (segment.start, segment.end),
|
|
"language": info.language,
|
|
"probability": "%d%%" % round(info.language_probability * 100),
|
|
**blob.metadata,
|
|
},
|
|
)
|