langchain/docs/extras/modules/data_connection/retrievers/integrations/svm.ipynb
Davis Chase 87e502c6bc
Doc refactor (#6300)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-06-16 11:52:56 -07:00

188 lines
3.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "ab66dd43",
"metadata": {},
"source": [
"# SVM\n",
"\n",
">[Support vector machines (SVMs)](https://scikit-learn.org/stable/modules/svm.html#support-vector-machines) are a set of supervised learning methods used for classification, regression and outliers detection.\n",
"\n",
"This notebook goes over how to use a retriever that under the hood uses an `SVM` using `scikit-learn` package.\n",
"\n",
"Largely based on https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.html"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a801b57c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#!pip install scikit-learn"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05b33419-fd3e-49c6-bae3-f20195d09c0c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#!pip install lark"
]
},
{
"cell_type": "markdown",
"id": "cc5e2d59-9510-40b2-a810-74af28e5a5e8",
"metadata": {
"tags": []
},
"source": [
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f9936d67-0471-4a82-954b-033c46ddb303",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"OpenAI API Key: ········\n"
]
}
],
"source": [
"import os\n",
"import getpass\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "393ac030",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.retrievers import SVMRetriever\n",
"from langchain.embeddings import OpenAIEmbeddings"
]
},
{
"cell_type": "markdown",
"id": "aaf80e7f",
"metadata": {},
"source": [
"## Create New Retriever with Texts"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "98b1c017",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"retriever = SVMRetriever.from_texts(\n",
" [\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"], OpenAIEmbeddings()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "08437fa2",
"metadata": {},
"source": [
"## Use Retriever\n",
"\n",
"We can now use the retriever!"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "c0455218",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"result = retriever.get_relevant_documents(\"foo\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "7dfa5c29",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='foo', metadata={}),\n",
" Document(page_content='foo bar', metadata={}),\n",
" Document(page_content='hello', metadata={}),\n",
" Document(page_content='world', metadata={})]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74bd9256",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}