mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
7ce81eb6f4
Co-authored-by: fodizoltan <zoltan@conway.expert> Co-authored-by: Yujie Qian <thomasq0809@gmail.com> Co-authored-by: fzowl <160063452+fzowl@users.noreply.github.com>
231 lines
7.3 KiB
Python
231 lines
7.3 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
import requests
|
|
from langchain_core._api.deprecation import deprecated
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from tenacity import (
|
|
before_sleep_log,
|
|
retry,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _create_retry_decorator(embeddings: VoyageEmbeddings) -> Callable[[Any], Any]:
|
|
min_seconds = 4
|
|
max_seconds = 10
|
|
# Wait 2^x * 1 second between each retry starting with
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
|
return retry(
|
|
reraise=True,
|
|
stop=stop_after_attempt(embeddings.max_retries),
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
)
|
|
|
|
|
|
def _check_response(response: dict) -> dict:
|
|
if "data" not in response:
|
|
raise RuntimeError(f"Voyage API Error. Message: {json.dumps(response)}")
|
|
return response
|
|
|
|
|
|
def embed_with_retry(embeddings: VoyageEmbeddings, **kwargs: Any) -> Any:
|
|
"""Use tenacity to retry the embedding call."""
|
|
retry_decorator = _create_retry_decorator(embeddings)
|
|
|
|
@retry_decorator
|
|
def _embed_with_retry(**kwargs: Any) -> Any:
|
|
response = requests.post(**kwargs)
|
|
return _check_response(response.json())
|
|
|
|
return _embed_with_retry(**kwargs)
|
|
|
|
|
|
@deprecated(
|
|
since="0.0.29",
|
|
removal="0.2",
|
|
alternative_import="langchain_voyageai.VoyageAIEmbeddings",
|
|
)
|
|
class VoyageEmbeddings(BaseModel, Embeddings):
|
|
"""Voyage embedding models.
|
|
|
|
To use, you should have the environment variable ``VOYAGE_API_KEY`` set with
|
|
your API key or pass it as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import VoyageEmbeddings
|
|
|
|
voyage = VoyageEmbeddings(voyage_api_key="your-api-key", model="voyage-2")
|
|
text = "This is a test query."
|
|
query_result = voyage.embed_query(text)
|
|
"""
|
|
|
|
model: str
|
|
voyage_api_base: str = "https://api.voyageai.com/v1/embeddings"
|
|
voyage_api_key: Optional[SecretStr] = None
|
|
batch_size: int
|
|
"""Maximum number of texts to embed in each API request."""
|
|
max_retries: int = 6
|
|
"""Maximum number of retries to make when generating."""
|
|
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
|
|
"""Timeout in seconds for the API request."""
|
|
show_progress_bar: bool = False
|
|
"""Whether to show a progress bar when embedding. Must have tqdm installed if set
|
|
to True."""
|
|
truncation: bool = True
|
|
"""Whether to truncate the input texts to fit within the context length.
|
|
|
|
If True, over-length input texts will be truncated to fit within the context
|
|
length, before vectorized by the embedding model. If False, an error will be
|
|
raised if any given text exceeds the context length."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
values["voyage_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "voyage_api_key", "VOYAGE_API_KEY")
|
|
)
|
|
|
|
if "model" not in values:
|
|
values["model"] = "voyage-01"
|
|
logger.warning(
|
|
"model will become a required arg for VoyageAIEmbeddings, "
|
|
"we recommend to specify it when using this class. "
|
|
"Currently the default is set to voyage-01."
|
|
)
|
|
|
|
if "batch_size" not in values:
|
|
values["batch_size"] = (
|
|
72
|
|
if "model" in values and (values["model"] in ["voyage-2", "voyage-02"])
|
|
else 7
|
|
)
|
|
|
|
return values
|
|
|
|
def _invocation_params(
|
|
self, input: List[str], input_type: Optional[str] = None
|
|
) -> Dict:
|
|
api_key = cast(SecretStr, self.voyage_api_key).get_secret_value()
|
|
params: Dict = {
|
|
"url": self.voyage_api_base,
|
|
"headers": {"Authorization": f"Bearer {api_key}"},
|
|
"json": {
|
|
"model": self.model,
|
|
"input": input,
|
|
"input_type": input_type,
|
|
"truncation": self.truncation,
|
|
},
|
|
"timeout": self.request_timeout,
|
|
}
|
|
return params
|
|
|
|
def _get_embeddings(
|
|
self,
|
|
texts: List[str],
|
|
batch_size: Optional[int] = None,
|
|
input_type: Optional[str] = None,
|
|
) -> List[List[float]]:
|
|
embeddings: List[List[float]] = []
|
|
|
|
if batch_size is None:
|
|
batch_size = self.batch_size
|
|
|
|
if self.show_progress_bar:
|
|
try:
|
|
from tqdm.auto import tqdm
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Must have tqdm installed if `show_progress_bar` is set to True. "
|
|
"Please install with `pip install tqdm`."
|
|
) from e
|
|
|
|
_iter = tqdm(range(0, len(texts), batch_size))
|
|
else:
|
|
_iter = range(0, len(texts), batch_size)
|
|
|
|
if input_type and input_type not in ["query", "document"]:
|
|
raise ValueError(
|
|
f"input_type {input_type} is invalid. Options: None, 'query', "
|
|
"'document'."
|
|
)
|
|
|
|
for i in _iter:
|
|
response = embed_with_retry(
|
|
self,
|
|
**self._invocation_params(
|
|
input=texts[i : i + batch_size], input_type=input_type
|
|
),
|
|
)
|
|
embeddings.extend(r["embedding"] for r in response["data"])
|
|
|
|
return embeddings
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Call out to Voyage Embedding endpoint for embedding search docs.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
return self._get_embeddings(
|
|
texts, batch_size=self.batch_size, input_type="document"
|
|
)
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Call out to Voyage Embedding endpoint for embedding query text.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embedding for the text.
|
|
"""
|
|
return self._get_embeddings(
|
|
[text], batch_size=self.batch_size, input_type="query"
|
|
)[0]
|
|
|
|
def embed_general_texts(
|
|
self, texts: List[str], *, input_type: Optional[str] = None
|
|
) -> List[List[float]]:
|
|
"""Call out to Voyage Embedding endpoint for embedding general text.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
input_type: Type of the input text. Default to None, meaning the type is
|
|
unspecified. Other options: query, document.
|
|
|
|
Returns:
|
|
Embedding for the text.
|
|
"""
|
|
return self._get_embeddings(
|
|
texts, batch_size=self.batch_size, input_type=input_type
|
|
)
|