mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
244 lines
7.8 KiB
Python
244 lines
7.8 KiB
Python
from __future__ import annotations
|
|
|
|
import ast
|
|
import json
|
|
import os
|
|
from io import StringIO
|
|
from sys import version_info
|
|
from typing import IO, TYPE_CHECKING, Any, Callable, List, Optional, Type
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForToolRun,
|
|
CallbackManager,
|
|
CallbackManagerForToolRun,
|
|
)
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, PrivateAttr
|
|
|
|
from langchain_community.tools import BaseTool, Tool
|
|
from langchain_community.tools.e2b_data_analysis.unparse import Unparser
|
|
|
|
if TYPE_CHECKING:
|
|
from e2b import EnvVars
|
|
from e2b.templates.data_analysis import Artifact
|
|
|
|
base_description = """Evaluates python code in a sandbox environment. \
|
|
The environment is long running and exists across multiple executions. \
|
|
You must send the whole script every time and print your outputs. \
|
|
Script should be pure python code that can be evaluated. \
|
|
It should be in python format NOT markdown. \
|
|
The code should NOT be wrapped in backticks. \
|
|
All python packages including requests, matplotlib, scipy, numpy, pandas, \
|
|
etc are available. Create and display chart using `plt.show()`."""
|
|
|
|
|
|
def _unparse(tree: ast.AST) -> str:
|
|
"""Unparse the AST."""
|
|
if version_info.minor < 9:
|
|
s = StringIO()
|
|
Unparser(tree, file=s)
|
|
source_code = s.getvalue()
|
|
s.close()
|
|
else:
|
|
source_code = ast.unparse(tree) # type: ignore[attr-defined]
|
|
return source_code
|
|
|
|
|
|
def add_last_line_print(code: str) -> str:
|
|
"""Add print statement to the last line if it's missing.
|
|
|
|
Sometimes, the LLM-generated code doesn't have `print(variable_name)`, instead the
|
|
LLM tries to print the variable only by writing `variable_name` (as you would in
|
|
REPL, for example).
|
|
|
|
This methods checks the AST of the generated Python code and adds the print
|
|
statement to the last line if it's missing.
|
|
"""
|
|
tree = ast.parse(code)
|
|
node = tree.body[-1]
|
|
if isinstance(node, ast.Expr) and isinstance(node.value, ast.Call):
|
|
if isinstance(node.value.func, ast.Name) and node.value.func.id == "print":
|
|
return _unparse(tree)
|
|
|
|
if isinstance(node, ast.Expr):
|
|
tree.body[-1] = ast.Expr(
|
|
value=ast.Call(
|
|
func=ast.Name(id="print", ctx=ast.Load()),
|
|
args=[node.value],
|
|
keywords=[],
|
|
)
|
|
)
|
|
|
|
return _unparse(tree)
|
|
|
|
|
|
class UploadedFile(BaseModel):
|
|
"""Description of the uploaded path with its remote path."""
|
|
|
|
name: str
|
|
remote_path: str
|
|
description: str
|
|
|
|
|
|
class E2BDataAnalysisToolArguments(BaseModel):
|
|
"""Arguments for the E2BDataAnalysisTool."""
|
|
|
|
python_code: str = Field(
|
|
...,
|
|
example="print('Hello World')",
|
|
description=(
|
|
"The python script to be evaluated. "
|
|
"The contents will be in main.py. "
|
|
"It should not be in markdown format."
|
|
),
|
|
)
|
|
|
|
|
|
class E2BDataAnalysisTool(BaseTool):
|
|
"""Tool for running python code in a sandboxed environment for data analysis."""
|
|
|
|
name = "e2b_data_analysis"
|
|
args_schema: Type[BaseModel] = E2BDataAnalysisToolArguments
|
|
session: Any
|
|
description: str
|
|
_uploaded_files: List[UploadedFile] = PrivateAttr(default_factory=list)
|
|
|
|
def __init__(
|
|
self,
|
|
api_key: Optional[str] = None,
|
|
cwd: Optional[str] = None,
|
|
env_vars: Optional[EnvVars] = None,
|
|
on_stdout: Optional[Callable[[str], Any]] = None,
|
|
on_stderr: Optional[Callable[[str], Any]] = None,
|
|
on_artifact: Optional[Callable[[Artifact], Any]] = None,
|
|
on_exit: Optional[Callable[[int], Any]] = None,
|
|
**kwargs: Any,
|
|
):
|
|
try:
|
|
from e2b import DataAnalysis
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import e2b, please install with `pip install e2b`."
|
|
) from e
|
|
|
|
# If no API key is provided, E2B will try to read it from the environment
|
|
# variable E2B_API_KEY
|
|
super().__init__(description=base_description, **kwargs)
|
|
self.session = DataAnalysis(
|
|
api_key=api_key,
|
|
cwd=cwd,
|
|
env_vars=env_vars,
|
|
on_stdout=on_stdout,
|
|
on_stderr=on_stderr,
|
|
on_exit=on_exit,
|
|
on_artifact=on_artifact,
|
|
)
|
|
|
|
def close(self) -> None:
|
|
"""Close the cloud sandbox."""
|
|
self._uploaded_files = []
|
|
self.session.close()
|
|
|
|
@property
|
|
def uploaded_files_description(self) -> str:
|
|
if len(self._uploaded_files) == 0:
|
|
return ""
|
|
lines = ["The following files available in the sandbox:"]
|
|
|
|
for f in self._uploaded_files:
|
|
if f.description == "":
|
|
lines.append(f"- path: `{f.remote_path}`")
|
|
else:
|
|
lines.append(
|
|
f"- path: `{f.remote_path}` \n description: `{f.description}`"
|
|
)
|
|
return "\n".join(lines)
|
|
|
|
def _run(
|
|
self,
|
|
python_code: str,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
callbacks: Optional[CallbackManager] = None,
|
|
) -> str:
|
|
python_code = add_last_line_print(python_code)
|
|
|
|
if callbacks is not None:
|
|
on_artifact = getattr(callbacks.metadata, "on_artifact", None)
|
|
else:
|
|
on_artifact = None
|
|
|
|
stdout, stderr, artifacts = self.session.run_python(
|
|
python_code, on_artifact=on_artifact
|
|
)
|
|
|
|
out = {
|
|
"stdout": stdout,
|
|
"stderr": stderr,
|
|
"artifacts": list(map(lambda artifact: artifact.name, artifacts)),
|
|
}
|
|
return json.dumps(out)
|
|
|
|
async def _arun(
|
|
self,
|
|
python_code: str,
|
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
raise NotImplementedError("e2b_data_analysis does not support async")
|
|
|
|
def run_command(
|
|
self,
|
|
cmd: str,
|
|
) -> dict:
|
|
"""Run shell command in the sandbox."""
|
|
proc = self.session.process.start(cmd)
|
|
output = proc.wait()
|
|
return {
|
|
"stdout": output.stdout,
|
|
"stderr": output.stderr,
|
|
"exit_code": output.exit_code,
|
|
}
|
|
|
|
def install_python_packages(self, package_names: str | List[str]) -> None:
|
|
"""Install python packages in the sandbox."""
|
|
self.session.install_python_packages(package_names)
|
|
|
|
def install_system_packages(self, package_names: str | List[str]) -> None:
|
|
"""Install system packages (via apt) in the sandbox."""
|
|
self.session.install_system_packages(package_names)
|
|
|
|
def download_file(self, remote_path: str) -> bytes:
|
|
"""Download file from the sandbox."""
|
|
return self.session.download_file(remote_path)
|
|
|
|
def upload_file(self, file: IO, description: str) -> UploadedFile:
|
|
"""Upload file to the sandbox.
|
|
|
|
The file is uploaded to the '/home/user/<filename>' path."""
|
|
remote_path = self.session.upload_file(file)
|
|
|
|
f = UploadedFile(
|
|
name=os.path.basename(file.name),
|
|
remote_path=remote_path,
|
|
description=description,
|
|
)
|
|
self._uploaded_files.append(f)
|
|
self.description = self.description + "\n" + self.uploaded_files_description
|
|
return f
|
|
|
|
def remove_uploaded_file(self, uploaded_file: UploadedFile) -> None:
|
|
"""Remove uploaded file from the sandbox."""
|
|
self.session.filesystem.remove(uploaded_file.remote_path)
|
|
self._uploaded_files = [
|
|
f
|
|
for f in self._uploaded_files
|
|
if f.remote_path != uploaded_file.remote_path
|
|
]
|
|
self.description = self.description + "\n" + self.uploaded_files_description
|
|
|
|
def as_tool(self) -> Tool:
|
|
return Tool.from_function(
|
|
func=self._run,
|
|
name=self.name,
|
|
description=self.description,
|
|
args_schema=self.args_schema,
|
|
)
|