mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
72 lines
2.0 KiB
Python
72 lines
2.0 KiB
Python
""" This file is for LLMRails Embedding """
|
|
import logging
|
|
import os
|
|
from typing import List, Optional
|
|
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra
|
|
|
|
|
|
class LLMRailsEmbeddings(BaseModel, Embeddings):
|
|
"""LLMRails embedding models.
|
|
|
|
To use, you should have the environment
|
|
variable ``LLM_RAILS_API_KEY`` set with your API key or pass it
|
|
as a named parameter to the constructor.
|
|
|
|
Model can be one of ["embedding-english-v1","embedding-multi-v1"]
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import LLMRailsEmbeddings
|
|
cohere = LLMRailsEmbeddings(
|
|
model="embedding-english-v1", api_key="my-api-key"
|
|
)
|
|
"""
|
|
|
|
model: str = "embedding-english-v1"
|
|
"""Model name to use."""
|
|
|
|
api_key: Optional[str] = None
|
|
"""LLMRails API key."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Call out to Cohere's embedding endpoint.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
api_key = self.api_key or os.environ.get("LLM_RAILS_API_KEY")
|
|
if api_key is None:
|
|
logging.warning("Can't find LLMRails credentials in environment.")
|
|
raise ValueError("LLM_RAILS_API_KEY is not set")
|
|
|
|
response = requests.post(
|
|
"https://api.llmrails.com/v1/embeddings",
|
|
headers={"X-API-KEY": api_key},
|
|
json={"input": texts, "model": self.model},
|
|
timeout=60,
|
|
)
|
|
return [item["embedding"] for item in response.json()["data"]]
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Call out to Cohere's embedding endpoint.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
return self.embed_documents([text])[0]
|