langchain/docs/snippets/modules/model_io/output_parsers/structured.mdx
Davis Chase 87e502c6bc
Doc refactor (#6300)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-06-16 11:52:56 -07:00

94 lines
2.2 KiB
Plaintext

```python
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
```
Here we define the response schema we want to receive.
```python
response_schemas = [
ResponseSchema(name="answer", description="answer to the user's question"),
ResponseSchema(name="source", description="source used to answer the user's question, should be a website.")
]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
```
We now get a string that contains instructions for how the response should be formatted, and we then insert that into our prompt.
```python
format_instructions = output_parser.get_format_instructions()
prompt = PromptTemplate(
template="answer the users question as best as possible.\n{format_instructions}\n{question}",
input_variables=["question"],
partial_variables={"format_instructions": format_instructions}
)
```
We can now use this to format a prompt to send to the language model, and then parse the returned result.
```python
model = OpenAI(temperature=0)
```
```python
_input = prompt.format_prompt(question="what's the capital of france?")
output = model(_input.to_string())
```
```python
output_parser.parse(output)
```
<CodeOutputBlock lang="python">
```
{'answer': 'Paris',
'source': 'https://www.worldatlas.com/articles/what-is-the-capital-of-france.html'}
```
</CodeOutputBlock>
And here's an example of using this in a chat model
```python
chat_model = ChatOpenAI(temperature=0)
```
```python
prompt = ChatPromptTemplate(
messages=[
HumanMessagePromptTemplate.from_template("answer the users question as best as possible.\n{format_instructions}\n{question}")
],
input_variables=["question"],
partial_variables={"format_instructions": format_instructions}
)
```
```python
_input = prompt.format_prompt(question="what's the capital of france?")
output = chat_model(_input.to_messages())
```
```python
output_parser.parse(output.content)
```
<CodeOutputBlock lang="python">
```
{'answer': 'Paris', 'source': 'https://en.wikipedia.org/wiki/Paris'}
```
</CodeOutputBlock>