mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
44 lines
1.0 KiB
Python
44 lines
1.0 KiB
Python
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_core.runnables import RunnableBranch
|
|
|
|
from .blurb_matcher import book_rec_chain
|
|
from .chat import chat
|
|
from .library_info import library_info
|
|
from .rag import librarian_rag
|
|
|
|
chain = (
|
|
ChatPromptTemplate.from_template(
|
|
"""Given the user message below,
|
|
classify it as either being about `recommendation`, `library` or `other`.
|
|
|
|
'{message}'
|
|
|
|
Respond with just one word.
|
|
For example, if the message is about a book recommendation,respond with
|
|
`recommendation`.
|
|
"""
|
|
)
|
|
| chat
|
|
| StrOutputParser()
|
|
)
|
|
|
|
|
|
def extract_op_field(x):
|
|
return x["output_text"]
|
|
|
|
|
|
branch = RunnableBranch(
|
|
(
|
|
lambda x: "recommendation" in x["topic"].lower(),
|
|
book_rec_chain | extract_op_field,
|
|
),
|
|
(
|
|
lambda x: "library" in x["topic"].lower(),
|
|
{"message": lambda x: x["message"]} | library_info,
|
|
),
|
|
librarian_rag,
|
|
)
|
|
|
|
branched_chain = {"topic": chain, "message": lambda x: x["message"]} | branch
|