mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
340 lines
8.1 KiB
Plaintext
340 lines
8.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9597802c",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Runhouse\n",
|
|
"\n",
|
|
"The [Runhouse](https://github.com/run-house/runhouse) allows remote compute and data across environments and users. See the [Runhouse docs](https://runhouse-docs.readthedocs-hosted.com/en/latest/).\n",
|
|
"\n",
|
|
"This example goes over how to use LangChain and [Runhouse](https://github.com/run-house/runhouse) to interact with models hosted on your own GPU, or on-demand GPUs on AWS, GCP, AWS, or Lambda.\n",
|
|
"\n",
|
|
"**Note**: Code uses `SelfHosted` name instead of the `Runhouse`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6066fede-2300-4173-9722-6f01f4fa34b4",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install runhouse"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "6fb585dd",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO | 2023-04-17 16:47:36,173 | No auth token provided, so not using RNS API to save and load configs\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM\n",
|
|
"from langchain import PromptTemplate, LLMChain\n",
|
|
"import runhouse as rh"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "06d6866e",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# For an on-demand A100 with GCP, Azure, or Lambda\n",
|
|
"gpu = rh.cluster(name=\"rh-a10x\", instance_type=\"A100:1\", use_spot=False)\n",
|
|
"\n",
|
|
"# For an on-demand A10G with AWS (no single A100s on AWS)\n",
|
|
"# gpu = rh.cluster(name='rh-a10x', instance_type='g5.2xlarge', provider='aws')\n",
|
|
"\n",
|
|
"# For an existing cluster\n",
|
|
"# gpu = rh.cluster(ips=['<ip of the cluster>'],\n",
|
|
"# ssh_creds={'ssh_user': '...', 'ssh_private_key':'<path_to_key>'},\n",
|
|
"# name='rh-a10x')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "035dea0f",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"template = \"\"\"Question: {question}\n",
|
|
"\n",
|
|
"Answer: Let's think step by step.\"\"\"\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3f3458d9",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = SelfHostedHuggingFaceLLM(\n",
|
|
" model_id=\"gpt2\", hardware=gpu, model_reqs=[\"pip:./\", \"transformers\", \"torch\"]\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "a641dbd9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 31,
|
|
"id": "6fb6fdb2",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO | 2023-02-17 05:42:23,537 | Running _generate_text via gRPC\n",
|
|
"INFO | 2023-02-17 05:42:24,016 | Time to send message: 0.48 seconds\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"\"\\n\\nLet's say we're talking sports teams who won the Super Bowl in the year Justin Beiber\""
|
|
]
|
|
},
|
|
"execution_count": 31,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
|
|
"\n",
|
|
"llm_chain.run(question)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c88709cd",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can also load more custom models through the SelfHostedHuggingFaceLLM interface:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "22820c5a",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = SelfHostedHuggingFaceLLM(\n",
|
|
" model_id=\"google/flan-t5-small\",\n",
|
|
" task=\"text2text-generation\",\n",
|
|
" hardware=gpu,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 39,
|
|
"id": "1528e70f",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO | 2023-02-17 05:54:21,681 | Running _generate_text via gRPC\n",
|
|
"INFO | 2023-02-17 05:54:21,937 | Time to send message: 0.25 seconds\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'berlin'"
|
|
]
|
|
},
|
|
"execution_count": 39,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm(\"What is the capital of Germany?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7a0c3746",
|
|
"metadata": {},
|
|
"source": [
|
|
"Using a custom load function, we can load a custom pipeline directly on the remote hardware:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 34,
|
|
"id": "893eb1d3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def load_pipeline():\n",
|
|
" from transformers import (\n",
|
|
" AutoModelForCausalLM,\n",
|
|
" AutoTokenizer,\n",
|
|
" pipeline,\n",
|
|
" ) # Need to be inside the fn in notebooks\n",
|
|
"\n",
|
|
" model_id = \"gpt2\"\n",
|
|
" tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
|
" model = AutoModelForCausalLM.from_pretrained(model_id)\n",
|
|
" pipe = pipeline(\n",
|
|
" \"text-generation\", model=model, tokenizer=tokenizer, max_new_tokens=10\n",
|
|
" )\n",
|
|
" return pipe\n",
|
|
"\n",
|
|
"\n",
|
|
"def inference_fn(pipeline, prompt, stop=None):\n",
|
|
" return pipeline(prompt)[0][\"generated_text\"][len(prompt) :]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "087d50dc",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = SelfHostedHuggingFaceLLM(\n",
|
|
" model_load_fn=load_pipeline, hardware=gpu, inference_fn=inference_fn\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 36,
|
|
"id": "feb8da8e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO | 2023-02-17 05:42:59,219 | Running _generate_text via gRPC\n",
|
|
"INFO | 2023-02-17 05:42:59,522 | Time to send message: 0.3 seconds\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'john w. bush'"
|
|
]
|
|
},
|
|
"execution_count": 36,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm(\"Who is the current US president?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "af08575f",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can send your pipeline directly over the wire to your model, but this will only work for small models (<2 Gb), and will be pretty slow:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d23023b9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pipeline = load_pipeline()\n",
|
|
"llm = SelfHostedPipeline.from_pipeline(\n",
|
|
" pipeline=pipeline, hardware=gpu, model_reqs=model_reqs\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fcb447a1",
|
|
"metadata": {},
|
|
"source": [
|
|
"Instead, we can also send it to the hardware's filesystem, which will be much faster."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7206b7d6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"rh.blob(pickle.dumps(pipeline), path=\"models/pipeline.pkl\").save().to(\n",
|
|
" gpu, path=\"models\"\n",
|
|
")\n",
|
|
"\n",
|
|
"llm = SelfHostedPipeline.from_pipeline(pipeline=\"models/pipeline.pkl\", hardware=gpu)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|