mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
203 lines
5.3 KiB
Plaintext
203 lines
5.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e49f1e0d",
|
|
"metadata": {},
|
|
"source": [
|
|
"# OpenAI\n",
|
|
"\n",
|
|
"This notebook covers how to get started with OpenAI chat models."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "522686de",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.chat_models import ChatOpenAI\n",
|
|
"from langchain.prompts.chat import (\n",
|
|
" ChatPromptTemplate,\n",
|
|
" SystemMessagePromptTemplate,\n",
|
|
" AIMessagePromptTemplate,\n",
|
|
" HumanMessagePromptTemplate,\n",
|
|
")\n",
|
|
"from langchain.schema import AIMessage, HumanMessage, SystemMessage"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "62e0dbc3",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"chat = ChatOpenAI(temperature=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4e5fe97e",
|
|
"metadata": {},
|
|
"source": [
|
|
"The above cell assumes that your OpenAI API key is set in your environment variables. If you would rather manually specify your API key and/or organization ID, use the following code:\n",
|
|
"\n",
|
|
"```python\n",
|
|
"chat = ChatOpenAI(temperature=0, openai_api_key=\"YOUR_API_KEY\", openai_organization=\"YOUR_ORGANIZATION_ID\")\n",
|
|
"```\n",
|
|
"Remove the openai_organization parameter should it not apply to you."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "ce16ad78-8e6f-48cd-954e-98be75eb5836",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, example=False)"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"messages = [\n",
|
|
" SystemMessage(\n",
|
|
" content=\"You are a helpful assistant that translates English to French.\"\n",
|
|
" ),\n",
|
|
" HumanMessage(\n",
|
|
" content=\"Translate this sentence from English to French. I love programming.\"\n",
|
|
" ),\n",
|
|
"]\n",
|
|
"chat(messages)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "778f912a-66ea-4a5d-b3de-6c7db4baba26",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.\n",
|
|
"\n",
|
|
"For convenience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "180c5cc8",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"template = (\n",
|
|
" \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
|
|
")\n",
|
|
"system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
|
|
"human_template = \"{text}\"\n",
|
|
"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "fbb043e6",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, example=False)"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"chat_prompt = ChatPromptTemplate.from_messages(\n",
|
|
" [system_message_prompt, human_message_prompt]\n",
|
|
")\n",
|
|
"\n",
|
|
"# get a chat completion from the formatted messages\n",
|
|
"chat(\n",
|
|
" chat_prompt.format_prompt(\n",
|
|
" input_language=\"English\", output_language=\"French\", text=\"I love programming.\"\n",
|
|
" ).to_messages()\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "57e27714",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Fine-tuning\n",
|
|
"\n",
|
|
"You can call fine-tuned OpenAI models by passing in your corresponding `modelName` parameter.\n",
|
|
"\n",
|
|
"This generally takes the form of `ft:{OPENAI_MODEL_NAME}:{ORG_NAME}::{MODEL_ID}`. For example:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "33c4a8b0",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, example=False)"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"fine_tuned_model = ChatOpenAI(temperature=0, model_name=\"ft:gpt-3.5-turbo-0613:langchain::7qTVM5AR\")\n",
|
|
"\n",
|
|
"fine_tuned_model(messages)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.5"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|