mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
481d3855dc
- `llm(prompt)` -> `llm.invoke(prompt)` - `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`) - `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt, config={"callbacks": callbacks})` - `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
319 lines
12 KiB
Python
319 lines
12 KiB
Python
"""Wrapper around Anyscale Endpoint"""
|
|
from typing import (
|
|
Any,
|
|
Dict,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
Set,
|
|
)
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
from langchain_community.llms.openai import (
|
|
BaseOpenAI,
|
|
acompletion_with_retry,
|
|
completion_with_retry,
|
|
)
|
|
from langchain_community.utils.openai import is_openai_v1
|
|
|
|
DEFAULT_BASE_URL = "https://api.endpoints.anyscale.com/v1"
|
|
DEFAULT_MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
|
|
|
|
def update_token_usage(
|
|
keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any]
|
|
) -> None:
|
|
"""Update token usage."""
|
|
_keys_to_use = keys.intersection(response["usage"])
|
|
for _key in _keys_to_use:
|
|
if _key not in token_usage:
|
|
token_usage[_key] = response["usage"][_key]
|
|
else:
|
|
token_usage[_key] += response["usage"][_key]
|
|
|
|
|
|
def create_llm_result(
|
|
choices: Any, prompts: List[str], token_usage: Dict[str, int], model_name: str
|
|
) -> LLMResult:
|
|
"""Create the LLMResult from the choices and prompts."""
|
|
generations = []
|
|
for i, _ in enumerate(prompts):
|
|
choice = choices[i]
|
|
generations.append(
|
|
[
|
|
Generation(
|
|
text=choice["message"]["content"],
|
|
generation_info=dict(
|
|
finish_reason=choice.get("finish_reason"),
|
|
logprobs=choice.get("logprobs"),
|
|
),
|
|
)
|
|
]
|
|
)
|
|
llm_output = {"token_usage": token_usage, "model_name": model_name}
|
|
return LLMResult(generations=generations, llm_output=llm_output)
|
|
|
|
|
|
class Anyscale(BaseOpenAI):
|
|
"""Anyscale large language models.
|
|
|
|
To use, you should have the environment variable ``ANYSCALE_API_KEY``set with your
|
|
Anyscale Endpoint, or pass it as a named parameter to the constructor.
|
|
To use with Anyscale Private Endpoint, please also set ``ANYSCALE_BASE_URL``.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
from langchain.llms import Anyscale
|
|
anyscalellm = Anyscale(anyscale_api_key="ANYSCALE_API_KEY")
|
|
# To leverage Ray for parallel processing
|
|
@ray.remote(num_cpus=1)
|
|
def send_query(llm, text):
|
|
resp = llm.invoke(text)
|
|
return resp
|
|
futures = [send_query.remote(anyscalellm, text) for text in texts]
|
|
results = ray.get(futures)
|
|
"""
|
|
|
|
"""Key word arguments to pass to the model."""
|
|
anyscale_api_base: str = Field(default=DEFAULT_BASE_URL)
|
|
anyscale_api_key: SecretStr = Field(default=None)
|
|
model_name: str = Field(default=DEFAULT_MODEL)
|
|
|
|
prefix_messages: List = Field(default_factory=list)
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
return False
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
values["anyscale_api_base"] = get_from_dict_or_env(
|
|
values,
|
|
"anyscale_api_base",
|
|
"ANYSCALE_API_BASE",
|
|
default=DEFAULT_BASE_URL,
|
|
)
|
|
values["anyscale_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "anyscale_api_key", "ANYSCALE_API_KEY")
|
|
)
|
|
values["model_name"] = get_from_dict_or_env(
|
|
values,
|
|
"model_name",
|
|
"MODEL_NAME",
|
|
default=DEFAULT_MODEL,
|
|
)
|
|
|
|
try:
|
|
import openai
|
|
|
|
if is_openai_v1():
|
|
client_params = {
|
|
"api_key": values["anyscale_api_key"].get_secret_value(),
|
|
"base_url": values["anyscale_api_base"],
|
|
# To do: future support
|
|
# "organization": values["openai_organization"],
|
|
# "timeout": values["request_timeout"],
|
|
# "max_retries": values["max_retries"],
|
|
# "default_headers": values["default_headers"],
|
|
# "default_query": values["default_query"],
|
|
# "http_client": values["http_client"],
|
|
}
|
|
if not values.get("client"):
|
|
values["client"] = openai.OpenAI(**client_params).completions
|
|
if not values.get("async_client"):
|
|
values["async_client"] = openai.AsyncOpenAI(
|
|
**client_params
|
|
).completions
|
|
else:
|
|
values["openai_api_base"] = values["anyscale_api_base"]
|
|
values["openai_api_key"] = values["anyscale_api_key"].get_secret_value()
|
|
values["client"] = openai.Completion
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import openai python package. "
|
|
"Please install it with `pip install openai`."
|
|
)
|
|
if values["streaming"] and values["n"] > 1:
|
|
raise ValueError("Cannot stream results when n > 1.")
|
|
if values["streaming"] and values["best_of"] > 1:
|
|
raise ValueError("Cannot stream results when best_of > 1.")
|
|
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
**{"model_name": self.model_name},
|
|
**super()._identifying_params,
|
|
}
|
|
|
|
@property
|
|
def _invocation_params(self) -> Dict[str, Any]:
|
|
"""Get the parameters used to invoke the model."""
|
|
openai_creds: Dict[str, Any] = {
|
|
"model": self.model_name,
|
|
}
|
|
if not is_openai_v1():
|
|
openai_creds.update(
|
|
{
|
|
"api_key": self.anyscale_api_key.get_secret_value(),
|
|
"api_base": self.anyscale_api_base,
|
|
}
|
|
)
|
|
return {**openai_creds, **super()._invocation_params}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "Anyscale LLM"
|
|
|
|
def _generate(
|
|
self,
|
|
prompts: List[str],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> LLMResult:
|
|
"""Call out to OpenAI's endpoint with k unique prompts.
|
|
|
|
Args:
|
|
prompts: The prompts to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The full LLM output.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = openai.generate(["Tell me a joke."])
|
|
"""
|
|
# TODO: write a unit test for this
|
|
params = self._invocation_params
|
|
params = {**params, **kwargs}
|
|
sub_prompts = self.get_sub_prompts(params, prompts, stop)
|
|
choices = []
|
|
token_usage: Dict[str, int] = {}
|
|
# Get the token usage from the response.
|
|
# Includes prompt, completion, and total tokens used.
|
|
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
|
|
system_fingerprint: Optional[str] = None
|
|
for _prompts in sub_prompts:
|
|
if self.streaming:
|
|
if len(_prompts) > 1:
|
|
raise ValueError("Cannot stream results with multiple prompts.")
|
|
|
|
generation: Optional[GenerationChunk] = None
|
|
for chunk in self._stream(_prompts[0], stop, run_manager, **kwargs):
|
|
if generation is None:
|
|
generation = chunk
|
|
else:
|
|
generation += chunk
|
|
assert generation is not None
|
|
choices.append(
|
|
{
|
|
"text": generation.text,
|
|
"finish_reason": generation.generation_info.get("finish_reason")
|
|
if generation.generation_info
|
|
else None,
|
|
"logprobs": generation.generation_info.get("logprobs")
|
|
if generation.generation_info
|
|
else None,
|
|
}
|
|
)
|
|
else:
|
|
response = completion_with_retry(
|
|
## THis is the ONLY change from BaseOpenAI()._generate()
|
|
self,
|
|
prompt=_prompts[0],
|
|
run_manager=run_manager,
|
|
**params,
|
|
)
|
|
if not isinstance(response, dict):
|
|
# V1 client returns the response in an PyDantic object instead of
|
|
# dict. For the transition period, we deep convert it to dict.
|
|
response = response.dict()
|
|
|
|
choices.extend(response["choices"])
|
|
update_token_usage(_keys, response, token_usage)
|
|
if not system_fingerprint:
|
|
system_fingerprint = response.get("system_fingerprint")
|
|
return self.create_llm_result(
|
|
choices,
|
|
prompts,
|
|
params,
|
|
token_usage,
|
|
system_fingerprint=system_fingerprint,
|
|
)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
prompts: List[str],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> LLMResult:
|
|
"""Call out to OpenAI's endpoint async with k unique prompts."""
|
|
params = self._invocation_params
|
|
params = {**params, **kwargs}
|
|
sub_prompts = self.get_sub_prompts(params, prompts, stop)
|
|
choices = []
|
|
token_usage: Dict[str, int] = {}
|
|
# Get the token usage from the response.
|
|
# Includes prompt, completion, and total tokens used.
|
|
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
|
|
system_fingerprint: Optional[str] = None
|
|
for _prompts in sub_prompts:
|
|
if self.streaming:
|
|
if len(_prompts) > 1:
|
|
raise ValueError("Cannot stream results with multiple prompts.")
|
|
|
|
generation: Optional[GenerationChunk] = None
|
|
async for chunk in self._astream(
|
|
_prompts[0], stop, run_manager, **kwargs
|
|
):
|
|
if generation is None:
|
|
generation = chunk
|
|
else:
|
|
generation += chunk
|
|
assert generation is not None
|
|
choices.append(
|
|
{
|
|
"text": generation.text,
|
|
"finish_reason": generation.generation_info.get("finish_reason")
|
|
if generation.generation_info
|
|
else None,
|
|
"logprobs": generation.generation_info.get("logprobs")
|
|
if generation.generation_info
|
|
else None,
|
|
}
|
|
)
|
|
else:
|
|
response = await acompletion_with_retry(
|
|
## THis is the ONLY change from BaseOpenAI()._agenerate()
|
|
self,
|
|
prompt=_prompts[0],
|
|
run_manager=run_manager,
|
|
**params,
|
|
)
|
|
if not isinstance(response, dict):
|
|
response = response.dict()
|
|
choices.extend(response["choices"])
|
|
update_token_usage(_keys, response, token_usage)
|
|
return self.create_llm_result(
|
|
choices,
|
|
prompts,
|
|
params,
|
|
token_usage,
|
|
system_fingerprint=system_fingerprint,
|
|
)
|