mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
3bddd708f7
continuation of PR #8550 @hwchase17 please see and merge. And also close the PR #8550. --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Erick Friis <erick@langchain.dev>
129 lines
4.0 KiB
Python
129 lines
4.0 KiB
Python
from langchain.memory import ConversationBufferMemory
|
|
from langchain.output_parsers.list import CommaSeparatedListOutputParser
|
|
from langchain.prompts import PromptTemplate
|
|
from langchain.sql_database import SQLDatabase
|
|
|
|
from langchain_experimental.sql.base import SQLDatabaseChain, SQLDatabaseSequentialChain
|
|
from tests.unit_tests.fake_llm import FakeLLM
|
|
|
|
# Fake db to test SQL-Chain
|
|
db = SQLDatabase.from_uri("sqlite:///:memory:")
|
|
|
|
|
|
def create_fake_db(db: SQLDatabase) -> SQLDatabase:
|
|
"""Create a table in fake db to test SQL-Chain"""
|
|
db.run(
|
|
"""
|
|
CREATE TABLE foo (baaz TEXT);
|
|
"""
|
|
)
|
|
db.run(
|
|
"""
|
|
INSERT INTO foo (baaz)
|
|
VALUES ('baaz');
|
|
"""
|
|
)
|
|
return db
|
|
|
|
|
|
db = create_fake_db(db)
|
|
|
|
|
|
def test_sql_chain_without_memory() -> None:
|
|
queries = {"foo": "SELECT baaz from foo", "foo2": "SELECT baaz from foo"}
|
|
llm = FakeLLM(queries=queries, sequential_responses=True)
|
|
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
|
|
assert db_chain.run("hello") == "SELECT baaz from foo"
|
|
|
|
|
|
def test_sql_chain_sequential_without_memory() -> None:
|
|
queries = {
|
|
"foo": "SELECT baaz from foo",
|
|
"foo2": "SELECT baaz from foo",
|
|
"foo3": "SELECT baaz from foo",
|
|
}
|
|
llm = FakeLLM(queries=queries, sequential_responses=True)
|
|
db_chain = SQLDatabaseSequentialChain.from_llm(llm, db, verbose=True)
|
|
assert db_chain.run("hello") == "SELECT baaz from foo"
|
|
|
|
|
|
def test_sql_chain_with_memory() -> None:
|
|
valid_prompt_with_history = """
|
|
Only use the following tables:
|
|
{table_info}
|
|
Question: {input}
|
|
|
|
Given an input question, first create a syntactically correct
|
|
{dialect} query to run.
|
|
Always limit your query to at most {top_k} results.
|
|
|
|
Relevant pieces of previous conversation:
|
|
{history}
|
|
|
|
(You do not need to use these pieces of information if not relevant)
|
|
"""
|
|
prompt = PromptTemplate(
|
|
input_variables=["input", "table_info", "dialect", "top_k", "history"],
|
|
template=valid_prompt_with_history,
|
|
)
|
|
queries = {"foo": "SELECT baaz from foo", "foo2": "SELECT baaz from foo"}
|
|
llm = FakeLLM(queries=queries, sequential_responses=True)
|
|
memory = ConversationBufferMemory()
|
|
db_chain = SQLDatabaseChain.from_llm(
|
|
llm, db, memory=memory, prompt=prompt, verbose=True
|
|
)
|
|
assert db_chain.run("hello") == "SELECT baaz from foo"
|
|
|
|
|
|
def test_sql_chain_sequential_with_memory() -> None:
|
|
valid_query_prompt_str = """
|
|
Only use the following tables:
|
|
{table_info}
|
|
Question: {input}
|
|
|
|
Given an input question, first create a syntactically correct
|
|
{dialect} query to run.
|
|
Always limit your query to at most {top_k} results.
|
|
|
|
Relevant pieces of previous conversation:
|
|
{history}
|
|
|
|
(You do not need to use these pieces of information
|
|
if not relevant)
|
|
"""
|
|
valid_decider_prompt_str = """Given the below input question and list of potential
|
|
tables, output a comma separated list of the
|
|
table names that may be necessary to answer this question.
|
|
|
|
Question: {query}
|
|
|
|
Table Names: {table_names}
|
|
|
|
Relevant Table Names:"""
|
|
|
|
valid_query_prompt = PromptTemplate(
|
|
input_variables=["input", "table_info", "dialect", "top_k", "history"],
|
|
template=valid_query_prompt_str,
|
|
)
|
|
valid_decider_prompt = PromptTemplate(
|
|
input_variables=["query", "table_names"],
|
|
template=valid_decider_prompt_str,
|
|
output_parser=CommaSeparatedListOutputParser(),
|
|
)
|
|
queries = {
|
|
"foo": "SELECT baaz from foo",
|
|
"foo2": "SELECT baaz from foo",
|
|
"foo3": "SELECT baaz from foo",
|
|
}
|
|
llm = FakeLLM(queries=queries, sequential_responses=True)
|
|
memory = ConversationBufferMemory(memory_key="history", input_key="query")
|
|
db_chain = SQLDatabaseSequentialChain.from_llm(
|
|
llm,
|
|
db,
|
|
memory=memory,
|
|
decider_prompt=valid_decider_prompt,
|
|
query_prompt=valid_query_prompt,
|
|
verbose=True,
|
|
)
|
|
assert db_chain.run("hello") == "SELECT baaz from foo"
|