langchain/libs/experimental/tests/unit_tests/test_data_anonymizer.py
Suresh Kumar Ponnusamy 70f7558db2
langchain-experimental: Add allow_list support in experimental/data_anonymizer (#11597)
- **Description:** Add allow_list support in langchain experimental
data-anonymizer package
  - **Issue:** no
  - **Dependencies:** no
  - **Tag maintainer:** @hwchase17
  - **Twitter handle:**
2023-10-11 14:50:41 -07:00

217 lines
7.8 KiB
Python

from typing import Iterator, List
import pytest
from . import is_libcublas_available
@pytest.fixture(scope="module", autouse=True)
def check_spacy_model() -> Iterator[None]:
import spacy
if not spacy.util.is_package("en_core_web_lg"):
pytest.skip(reason="Spacy model 'en_core_web_lg' not installed")
yield
@pytest.fixture(scope="module", autouse=True)
def check_libcublas() -> Iterator[None]:
if not is_libcublas_available():
pytest.skip(reason="libcublas.so is not available")
yield
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
@pytest.mark.parametrize(
"analyzed_fields,should_contain",
[(["PERSON"], False), (["PHONE_NUMBER"], True), (None, False)],
)
def test_anonymize(analyzed_fields: List[str], should_contain: bool) -> None:
"""Test anonymizing a name in a simple sentence"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = "Hello, my name is John Doe."
anonymizer = PresidioAnonymizer(analyzed_fields=analyzed_fields)
anonymized_text = anonymizer.anonymize(text)
assert ("John Doe" in anonymized_text) == should_contain
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
@pytest.mark.parametrize(
"analyzed_fields,should_contain",
[(["PERSON"], True), (["PHONE_NUMBER"], True), (None, True)],
)
def test_anonymize_allow_list(analyzed_fields: List[str], should_contain: bool) -> None:
"""Test anonymizing a name in a simple sentence"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = "Hello, my name is John Doe."
anonymizer = PresidioAnonymizer(analyzed_fields=analyzed_fields)
anonymized_text = anonymizer.anonymize(text, allow_list=["John Doe"])
assert ("John Doe" in anonymized_text) == should_contain
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_anonymize_multiple() -> None:
"""Test anonymizing multiple items in a sentence"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = "John Smith's phone number is 313-666-7440 and email is johnsmith@gmail.com"
anonymizer = PresidioAnonymizer()
anonymized_text = anonymizer.anonymize(text)
for phrase in ["John Smith", "313-666-7440", "johnsmith@gmail.com"]:
assert phrase not in anonymized_text
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_check_instances() -> None:
"""Test anonymizing multiple items in a sentence"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = (
"This is John Smith. John Smith works in a bakery." "John Smith is a good guy"
)
anonymizer = PresidioAnonymizer(["PERSON"], faker_seed=42)
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text.count("Connie Lawrence") == 3
# New name should be generated
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text.count("Connie Lawrence") == 0
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_anonymize_with_custom_operator() -> None:
"""Test anonymize a name with a custom operator"""
from presidio_anonymizer.entities import OperatorConfig
from langchain_experimental.data_anonymizer import PresidioAnonymizer
custom_operator = {"PERSON": OperatorConfig("replace", {"new_value": "NAME"})}
anonymizer = PresidioAnonymizer(operators=custom_operator)
text = "Jane Doe was here."
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == "NAME was here."
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_add_recognizer_operator() -> None:
"""
Test add recognizer and anonymize a new type of entity and with a custom operator
"""
from presidio_analyzer import PatternRecognizer
from presidio_anonymizer.entities import OperatorConfig
from langchain_experimental.data_anonymizer import PresidioAnonymizer
anonymizer = PresidioAnonymizer(analyzed_fields=[])
titles_list = ["Sir", "Madam", "Professor"]
custom_recognizer = PatternRecognizer(
supported_entity="TITLE", deny_list=titles_list
)
anonymizer.add_recognizer(custom_recognizer)
# anonymizing with custom recognizer
text = "Madam Jane Doe was here."
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == "<TITLE> Jane Doe was here."
# anonymizing with custom recognizer and operator
custom_operator = {"TITLE": OperatorConfig("replace", {"new_value": "Dear"})}
anonymizer.add_operators(custom_operator)
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == "Dear Jane Doe was here."
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_non_faker_values() -> None:
"""Test anonymizing multiple items in a sentence without faker values"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = (
"My name is John Smith. Your name is Adam Smith. Her name is Jane Smith."
"Our names are: John Smith, Adam Smith, Jane Smith."
)
expected_result = (
"My name is <PERSON>. Your name is <PERSON_2>. Her name is <PERSON_3>."
"Our names are: <PERSON>, <PERSON_2>, <PERSON_3>."
)
anonymizer = PresidioAnonymizer(add_default_faker_operators=False)
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == expected_result
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_exact_matching_strategy() -> None:
"""
Test exact matching strategy for deanonymization.
"""
from langchain_experimental.data_anonymizer import (
deanonymizer_matching_strategies as dms,
)
deanonymizer_mapping = {
"PERSON": {"Maria Lynch": "Slim Shady"},
"PHONE_NUMBER": {"7344131647": "313-666-7440"},
"EMAIL_ADDRESS": {"wdavis@example.net": "real.slim.shady@gmail.com"},
"CREDIT_CARD": {"213186379402654": "4916 0387 9536 0861"},
}
text = (
"Are you Maria Lynch? I found your card with number 213186379402654. "
"Is this your phone number: 7344131647? "
"Is this your email address: wdavis@example.net"
)
deanonymized_text = dms.exact_matching_strategy(text, deanonymizer_mapping)
for original_value in [
"Slim Shady",
"313-666-7440",
"real.slim.shady@gmail.com",
"4916 0387 9536 0861",
]:
assert original_value in deanonymized_text
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_best_matching_strategy() -> None:
"""
Test exact matching strategy for deanonymization.
"""
from langchain_experimental.data_anonymizer import (
deanonymizer_matching_strategies as dms,
)
deanonymizer_mapping = {
"PERSON": {"Maria Lynch": "Slim Shady"},
"PHONE_NUMBER": {"7344131647": "313-666-7440"},
"EMAIL_ADDRESS": {"wdavis@example.net": "real.slim.shady@gmail.com"},
"CREDIT_CARD": {"213186379402654": "4916 0387 9536 0861"},
}
# Changed some values:
# - "Maria Lynch" -> "Maria K. Lynch"
# - "7344131647" -> "734-413-1647"
# - "213186379402654" -> "2131 8637 9402 654"
# - "wdavis@example.net" -> the same to test exact match
text = (
"Are you Maria K. Lynch? I found your card with number 2131 8637 9402 654. "
"Is this your phone number: 734-413-1647?"
"Is this your email address: wdavis@example.net"
)
deanonymized_text = dms.combined_exact_fuzzy_matching_strategy(
text, deanonymizer_mapping
)
for original_value in [
"Slim Shady",
"313-666-7440",
"real.slim.shady@gmail.com",
"4916 0387 9536 0861",
]:
assert original_value in deanonymized_text