mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
158 lines
5.6 KiB
Python
158 lines
5.6 KiB
Python
"""Test JinaChat wrapper."""
|
|
|
|
from typing import cast
|
|
|
|
import pytest
|
|
from langchain_core.callbacks import CallbackManager
|
|
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
|
|
from langchain_core.outputs import ChatGeneration, LLMResult
|
|
from langchain_core.pydantic_v1 import SecretStr
|
|
from pytest import CaptureFixture, MonkeyPatch
|
|
|
|
from langchain_community.chat_models.jinachat import JinaChat
|
|
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
|
|
|
|
|
def test_jinachat_api_key_is_secret_string() -> None:
|
|
llm = JinaChat(jinachat_api_key="secret-api-key")
|
|
assert isinstance(llm.jinachat_api_key, SecretStr)
|
|
|
|
|
|
def test_jinachat_api_key_masked_when_passed_from_env(
|
|
monkeypatch: MonkeyPatch, capsys: CaptureFixture
|
|
) -> None:
|
|
"""Test initialization with an API key provided via an env variable"""
|
|
monkeypatch.setenv("JINACHAT_API_KEY", "secret-api-key")
|
|
llm = JinaChat()
|
|
print(llm.jinachat_api_key, end="")
|
|
captured = capsys.readouterr()
|
|
|
|
assert captured.out == "**********"
|
|
|
|
|
|
def test_jinachat_api_key_masked_when_passed_via_constructor(
|
|
capsys: CaptureFixture,
|
|
) -> None:
|
|
"""Test initialization with an API key provided via the initializer"""
|
|
llm = JinaChat(jinachat_api_key="secret-api-key")
|
|
print(llm.jinachat_api_key, end="")
|
|
captured = capsys.readouterr()
|
|
|
|
assert captured.out == "**********"
|
|
|
|
|
|
def test_uses_actual_secret_value_from_secretstr() -> None:
|
|
"""Test that actual secret is retrieved using `.get_secret_value()`."""
|
|
llm = JinaChat(jinachat_api_key="secret-api-key")
|
|
assert cast(SecretStr, llm.jinachat_api_key).get_secret_value() == "secret-api-key"
|
|
|
|
|
|
def test_jinachat() -> None:
|
|
"""Test JinaChat wrapper."""
|
|
chat = JinaChat(max_tokens=10)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat([message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_jinachat_system_message() -> None:
|
|
"""Test JinaChat wrapper with system message."""
|
|
chat = JinaChat(max_tokens=10)
|
|
system_message = SystemMessage(content="You are to chat with the user.")
|
|
human_message = HumanMessage(content="Hello")
|
|
response = chat([system_message, human_message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_jinachat_generate() -> None:
|
|
"""Test JinaChat wrapper with generate."""
|
|
chat = JinaChat(max_tokens=10)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat.generate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
for generations in response.generations:
|
|
assert len(generations) == 1
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
def test_jinachat_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = JinaChat(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat([message])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, BaseMessage)
|
|
|
|
|
|
async def test_async_jinachat() -> None:
|
|
"""Test async generation."""
|
|
chat = JinaChat(max_tokens=102)
|
|
message = HumanMessage(content="Hello")
|
|
response = await chat.agenerate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
for generations in response.generations:
|
|
assert len(generations) == 1
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
async def test_async_jinachat_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = JinaChat(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = await chat.agenerate([[message], [message]])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
for generations in response.generations:
|
|
assert len(generations) == 1
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
def test_jinachat_extra_kwargs() -> None:
|
|
"""Test extra kwargs to chat openai."""
|
|
# Check that foo is saved in extra_kwargs.
|
|
llm = JinaChat(foo=3, max_tokens=10)
|
|
assert llm.max_tokens == 10
|
|
assert llm.model_kwargs == {"foo": 3}
|
|
|
|
# Test that if extra_kwargs are provided, they are added to it.
|
|
llm = JinaChat(foo=3, model_kwargs={"bar": 2})
|
|
assert llm.model_kwargs == {"foo": 3, "bar": 2}
|
|
|
|
# Test that if provided twice it errors
|
|
with pytest.raises(ValueError):
|
|
JinaChat(foo=3, model_kwargs={"foo": 2})
|
|
|
|
# Test that if explicit param is specified in kwargs it errors
|
|
with pytest.raises(ValueError):
|
|
JinaChat(model_kwargs={"temperature": 0.2})
|