mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
72 lines
2.6 KiB
Python
72 lines
2.6 KiB
Python
"""Power BI agent."""
|
|
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
|
|
|
from langchain_core.callbacks import BaseCallbackManager
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
|
|
from langchain_community.agent_toolkits.powerbi.prompt import (
|
|
POWERBI_CHAT_PREFIX,
|
|
POWERBI_CHAT_SUFFIX,
|
|
)
|
|
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
|
|
from langchain_community.utilities.powerbi import PowerBIDataset
|
|
|
|
if TYPE_CHECKING:
|
|
from langchain.agents import AgentExecutor
|
|
from langchain.agents.agent import AgentOutputParser
|
|
from langchain.memory.chat_memory import BaseChatMemory
|
|
|
|
|
|
def create_pbi_chat_agent(
|
|
llm: BaseChatModel,
|
|
toolkit: Optional[PowerBIToolkit] = None,
|
|
powerbi: Optional[PowerBIDataset] = None,
|
|
callback_manager: Optional[BaseCallbackManager] = None,
|
|
output_parser: Optional[AgentOutputParser] = None,
|
|
prefix: str = POWERBI_CHAT_PREFIX,
|
|
suffix: str = POWERBI_CHAT_SUFFIX,
|
|
examples: Optional[str] = None,
|
|
input_variables: Optional[List[str]] = None,
|
|
memory: Optional[BaseChatMemory] = None,
|
|
top_k: int = 10,
|
|
verbose: bool = False,
|
|
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> AgentExecutor:
|
|
"""Construct a Power BI agent from a Chat LLM and tools.
|
|
|
|
If you supply only a toolkit and no Power BI dataset, the same LLM is used for both.
|
|
"""
|
|
from langchain.agents import AgentExecutor
|
|
from langchain.agents.conversational_chat.base import ConversationalChatAgent
|
|
from langchain.memory import ConversationBufferMemory
|
|
|
|
if toolkit is None:
|
|
if powerbi is None:
|
|
raise ValueError("Must provide either a toolkit or powerbi dataset")
|
|
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
|
|
tools = toolkit.get_tools()
|
|
tables = powerbi.table_names if powerbi else toolkit.powerbi.table_names
|
|
agent = ConversationalChatAgent.from_llm_and_tools(
|
|
llm=llm,
|
|
tools=tools,
|
|
system_message=prefix.format(top_k=top_k).format(tables=tables),
|
|
human_message=suffix,
|
|
input_variables=input_variables,
|
|
callback_manager=callback_manager,
|
|
output_parser=output_parser,
|
|
verbose=verbose,
|
|
**kwargs,
|
|
)
|
|
return AgentExecutor.from_agent_and_tools(
|
|
agent=agent,
|
|
tools=tools,
|
|
callback_manager=callback_manager,
|
|
memory=memory
|
|
or ConversationBufferMemory(memory_key="chat_history", return_messages=True),
|
|
verbose=verbose,
|
|
**(agent_executor_kwargs or {}),
|
|
)
|