mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
5da9dd1195
Addresses #20523
217 lines
7.0 KiB
Python
217 lines
7.0 KiB
Python
import asyncio
|
|
import logging
|
|
import warnings
|
|
from typing import Dict, Iterable, List, Optional
|
|
|
|
import httpx
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import (
|
|
BaseModel,
|
|
Extra,
|
|
Field,
|
|
SecretStr,
|
|
root_validator,
|
|
)
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from tokenizers import Tokenizer # type: ignore
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
MAX_TOKENS = 16_000
|
|
"""A batching parameter for the Mistral API. This is NOT the maximum number of tokens
|
|
accepted by the embedding model for each document/chunk, but rather the maximum number
|
|
of tokens that can be sent in a single request to the Mistral API (across multiple
|
|
documents/chunks)"""
|
|
|
|
|
|
class DummyTokenizer:
|
|
"""Dummy tokenizer for when tokenizer cannot be accessed (e.g., via Huggingface)"""
|
|
|
|
def encode_batch(self, texts: List[str]) -> List[List[str]]:
|
|
return [list(text) for text in texts]
|
|
|
|
|
|
class MistralAIEmbeddings(BaseModel, Embeddings):
|
|
"""MistralAI embedding models.
|
|
|
|
To use, set the environment variable `MISTRAL_API_KEY` is set with your API key or
|
|
pass it as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_mistralai import MistralAIEmbeddings
|
|
|
|
mistral = MistralAIEmbeddings(
|
|
model="mistral-embed",
|
|
api_key="my-api-key"
|
|
)
|
|
"""
|
|
|
|
client: httpx.Client = Field(default=None) #: :meta private:
|
|
async_client: httpx.AsyncClient = Field(default=None) #: :meta private:
|
|
mistral_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
|
|
endpoint: str = "https://api.mistral.ai/v1/"
|
|
max_retries: int = 5
|
|
timeout: int = 120
|
|
max_concurrent_requests: int = 64
|
|
tokenizer: Tokenizer = Field(default=None)
|
|
|
|
model: str = "mistral-embed"
|
|
|
|
class Config:
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
allow_population_by_field_name = True
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate configuration."""
|
|
|
|
values["mistral_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values, "mistral_api_key", "MISTRAL_API_KEY", default=""
|
|
)
|
|
)
|
|
api_key_str = values["mistral_api_key"].get_secret_value()
|
|
# todo: handle retries
|
|
values["client"] = httpx.Client(
|
|
base_url=values["endpoint"],
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
"Accept": "application/json",
|
|
"Authorization": f"Bearer {api_key_str}",
|
|
},
|
|
timeout=values["timeout"],
|
|
)
|
|
# todo: handle retries and max_concurrency
|
|
values["async_client"] = httpx.AsyncClient(
|
|
base_url=values["endpoint"],
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
"Accept": "application/json",
|
|
"Authorization": f"Bearer {api_key_str}",
|
|
},
|
|
timeout=values["timeout"],
|
|
)
|
|
if values["tokenizer"] is None:
|
|
try:
|
|
values["tokenizer"] = Tokenizer.from_pretrained(
|
|
"mistralai/Mixtral-8x7B-v0.1"
|
|
)
|
|
except IOError: # huggingface_hub GatedRepoError
|
|
warnings.warn(
|
|
"Could not download mistral tokenizer from Huggingface for "
|
|
"calculating batch sizes. Set a Huggingface token via the "
|
|
"HF_TOKEN environment variable to download the real tokenizer. "
|
|
"Falling back to a dummy tokenizer that uses `len()`."
|
|
)
|
|
values["tokenizer"] = DummyTokenizer()
|
|
return values
|
|
|
|
def _get_batches(self, texts: List[str]) -> Iterable[List[str]]:
|
|
"""Split a list of texts into batches of less than 16k tokens
|
|
for Mistral API."""
|
|
batch: List[str] = []
|
|
batch_tokens = 0
|
|
|
|
text_token_lengths = [
|
|
len(encoded) for encoded in self.tokenizer.encode_batch(texts)
|
|
]
|
|
|
|
for text, text_tokens in zip(texts, text_token_lengths):
|
|
if batch_tokens + text_tokens > MAX_TOKENS:
|
|
if len(batch) > 0:
|
|
# edge case where first batch exceeds max tokens
|
|
# should not yield an empty batch.
|
|
yield batch
|
|
batch = [text]
|
|
batch_tokens = text_tokens
|
|
else:
|
|
batch.append(text)
|
|
batch_tokens += text_tokens
|
|
if batch:
|
|
yield batch
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed a list of document texts.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
try:
|
|
batch_responses = (
|
|
self.client.post(
|
|
url="/embeddings",
|
|
json=dict(
|
|
model=self.model,
|
|
input=batch,
|
|
),
|
|
)
|
|
for batch in self._get_batches(texts)
|
|
)
|
|
return [
|
|
list(map(float, embedding_obj["embedding"]))
|
|
for response in batch_responses
|
|
for embedding_obj in response.json()["data"]
|
|
]
|
|
except Exception as e:
|
|
logger.error(f"An error occurred with MistralAI: {e}")
|
|
raise
|
|
|
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed a list of document texts.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
try:
|
|
batch_responses = await asyncio.gather(
|
|
*[
|
|
self.async_client.post(
|
|
url="/embeddings",
|
|
json=dict(
|
|
model=self.model,
|
|
input=batch,
|
|
),
|
|
)
|
|
for batch in self._get_batches(texts)
|
|
]
|
|
)
|
|
return [
|
|
list(map(float, embedding_obj["embedding"]))
|
|
for response in batch_responses
|
|
for embedding_obj in response.json()["data"]
|
|
]
|
|
except Exception as e:
|
|
logger.error(f"An error occurred with MistralAI: {e}")
|
|
raise
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Embed a single query text.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embedding for the text.
|
|
"""
|
|
return self.embed_documents([text])[0]
|
|
|
|
async def aembed_query(self, text: str) -> List[float]:
|
|
"""Embed a single query text.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embedding for the text.
|
|
"""
|
|
return (await self.aembed_documents([text]))[0]
|