mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
c4599444ee
```python from langchain.agents import tool from langchain_mistralai import ChatMistralAI llm = ChatMistralAI(model="mistral-large-latest", temperature=0) @tool def get_word_length(word: str) -> int: """Returns the length of a word.""" return len(word) tools = [get_word_length] llm_with_tools = llm.bind_tools(tools) llm_with_tools.invoke("how long is the word chrysanthemum") ``` currently raises ``` AttributeError: 'dict' object has no attribute 'model_dump' ``` Same with `.with_structured_output` ```python from langchain_mistralai import ChatMistralAI from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): """An answer to the user question along with justification for the answer.""" answer: str justification: str llm = ChatMistralAI(model="mistral-large-latest", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") ``` This appears to fix.
85 lines
2.4 KiB
Python
85 lines
2.4 KiB
Python
"""Test ChatMistral chat model."""
|
|
from langchain_mistralai.chat_models import ChatMistralAI
|
|
|
|
|
|
def test_stream() -> None:
|
|
"""Test streaming tokens from ChatMistralAI."""
|
|
llm = ChatMistralAI()
|
|
|
|
for token in llm.stream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_astream() -> None:
|
|
"""Test streaming tokens from ChatMistralAI."""
|
|
llm = ChatMistralAI()
|
|
|
|
async for token in llm.astream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_abatch() -> None:
|
|
"""Test streaming tokens from ChatMistralAI"""
|
|
llm = ChatMistralAI()
|
|
|
|
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_abatch_tags() -> None:
|
|
"""Test batch tokens from ChatMistralAI"""
|
|
llm = ChatMistralAI()
|
|
|
|
result = await llm.abatch(
|
|
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
|
|
)
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
def test_batch() -> None:
|
|
"""Test batch tokens from ChatMistralAI"""
|
|
llm = ChatMistralAI()
|
|
|
|
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_ainvoke() -> None:
|
|
"""Test invoke tokens from ChatMistralAI"""
|
|
llm = ChatMistralAI()
|
|
|
|
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
|
assert isinstance(result.content, str)
|
|
|
|
|
|
def test_invoke() -> None:
|
|
"""Test invoke tokens from ChatMistralAI"""
|
|
llm = ChatMistralAI()
|
|
|
|
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
|
assert isinstance(result.content, str)
|
|
|
|
|
|
def test_structred_output() -> None:
|
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
|
|
schema = {
|
|
"title": "AnswerWithJustification",
|
|
"description": (
|
|
"An answer to the user question along with justification for the answer."
|
|
),
|
|
"type": "object",
|
|
"properties": {
|
|
"answer": {"title": "Answer", "type": "string"},
|
|
"justification": {"title": "Justification", "type": "string"},
|
|
},
|
|
"required": ["answer", "justification"],
|
|
}
|
|
structured_llm = llm.with_structured_output(schema)
|
|
result = structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
assert isinstance(result, dict)
|