mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
163 lines
3.6 KiB
Plaintext
163 lines
3.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9e9b7651",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Custom LLM\n",
|
|
"\n",
|
|
"This notebook goes over how to create a custom LLM wrapper, in case you want to use your own LLM or a different wrapper than one that is supported in LangChain.\n",
|
|
"\n",
|
|
"There is only one required thing that a custom LLM needs to implement:\n",
|
|
"\n",
|
|
"1. A `_call` method that takes in a string, some optional stop words, and returns a string\n",
|
|
"\n",
|
|
"There is a second optional thing it can implement:\n",
|
|
"\n",
|
|
"1. An `_identifying_params` property that is used to help with printing of this class. Should return a dictionary.\n",
|
|
"\n",
|
|
"Let's implement a very simple custom LLM that just returns the first N characters of the input."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "a65696a0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from typing import Any, List, Mapping, Optional\n",
|
|
"\n",
|
|
"from langchain.callbacks.manager import CallbackManagerForLLMRun\n",
|
|
"from langchain.llms.base import LLM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "d5ceff02",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"class CustomLLM(LLM):\n",
|
|
" n: int\n",
|
|
"\n",
|
|
" @property\n",
|
|
" def _llm_type(self) -> str:\n",
|
|
" return \"custom\"\n",
|
|
"\n",
|
|
" def _call(\n",
|
|
" self,\n",
|
|
" prompt: str,\n",
|
|
" stop: Optional[List[str]] = None,\n",
|
|
" run_manager: Optional[CallbackManagerForLLMRun] = None,\n",
|
|
" ) -> str:\n",
|
|
" if stop is not None:\n",
|
|
" raise ValueError(\"stop kwargs are not permitted.\")\n",
|
|
" return prompt[: self.n]\n",
|
|
"\n",
|
|
" @property\n",
|
|
" def _identifying_params(self) -> Mapping[str, Any]:\n",
|
|
" \"\"\"Get the identifying parameters.\"\"\"\n",
|
|
" return {\"n\": self.n}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "714dede0",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can now use this as an any other LLM."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "10e5ece6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = CustomLLM(n=10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "8cd49199",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'This is a '"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm(\"This is a foobar thing\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bbfebea1",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can also print the LLM and see its custom print."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "9c33fa19",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\u001b[1mCustomLLM\u001b[0m\n",
|
|
"Params: {'n': 10}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(llm)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6dac3f47",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|