langchain/templates/rag-singlestoredb/rag_singlestoredb/chain.py

61 lines
1.8 KiB
Python

import os
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import SingleStoreDB
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
if os.environ.get("SINGLESTOREDB_URL", None) is None:
raise Exception("Missing `SINGLESTOREDB_URL` environment variable.")
# SINGLESTOREDB_URL takes the form of: "admin:password@host:port/db_name"
## Ingest code - you may need to run this the first time
# # Load
# from langchain_community.document_loaders import WebBaseLoader
# loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
# data = loader.load()
# # Split
# from langchain_text_splitters import RecursiveCharacterTextSplitter
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
# all_splits = text_splitter.split_documents(data)
# # Add to vectorDB
# vectorstore = SingleStoreDB.from_documents(
# documents=all_splits, embedding=OpenAIEmbeddings()
# )
# retriever = vectorstore.as_retriever()
vectorstore = SingleStoreDB(embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever()
# RAG prompt
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
# RAG
model = ChatOpenAI()
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| prompt
| model
| StrOutputParser()
)
# Add typing for input
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)