langchain/libs/community/langchain_community/llms/bigdl_llm.py
Shengsheng Huang ac1dd8ad94
community[minor]: migrate bigdl-llm to ipex-llm (#19518)
- **Description**: `bigdl-llm` library has been renamed to
[`ipex-llm`](https://github.com/intel-analytics/ipex-llm). This PR
migrates the `bigdl-llm` integration to `ipex-llm` .
- **Issue**: N/A. The original PR of `bigdl-llm` is
https://github.com/langchain-ai/langchain/pull/17953
- **Dependencies**: `ipex-llm` library
- **Contribution maintainer**: @shane-huang

Updated doc:   docs/docs/integrations/llms/ipex_llm.ipynb
Updated test:
libs/community/tests/integration_tests/llms/test_ipex_llm.py
2024-03-27 20:12:59 -07:00

146 lines
4.2 KiB
Python

import logging
from typing import Any, Optional
from langchain_core.language_models.llms import LLM
from langchain_community.llms.ipex_llm import IpexLLM
logger = logging.getLogger(__name__)
class BigdlLLM(IpexLLM):
"""Wrapper around the BigdlLLM model
Example:
.. code-block:: python
from langchain_community.llms import BigdlLLM
llm = BigdlLLM.from_model_id(model_id="THUDM/chatglm-6b")
"""
@classmethod
def from_model_id(
cls,
model_id: str,
model_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> LLM:
"""
Construct object from model_id
Args:
model_id: Path for the huggingface repo id to be downloaded or
the huggingface checkpoint folder.
model_kwargs: Keyword arguments to pass to the model and tokenizer.
kwargs: Extra arguments to pass to the model and tokenizer.
Returns:
An object of BigdlLLM.
"""
logger.warning("BigdlLLM was deprecated. Please use IpexLLM instead.")
try:
from bigdl.llm.transformers import (
AutoModel,
AutoModelForCausalLM,
)
from transformers import AutoTokenizer, LlamaTokenizer
except ImportError:
raise ValueError(
"Could not import bigdl-llm or transformers. "
"Please install it with `pip install --pre --upgrade bigdl-llm[all]`."
)
_model_kwargs = model_kwargs or {}
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
except Exception:
tokenizer = LlamaTokenizer.from_pretrained(model_id, **_model_kwargs)
try:
model = AutoModelForCausalLM.from_pretrained(
model_id, load_in_4bit=True, **_model_kwargs
)
except Exception:
model = AutoModel.from_pretrained(
model_id, load_in_4bit=True, **_model_kwargs
)
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
return cls(
model_id=model_id,
model=model,
tokenizer=tokenizer,
model_kwargs=_model_kwargs,
**kwargs,
)
@classmethod
def from_model_id_low_bit(
cls,
model_id: str,
model_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> LLM:
"""
Construct low_bit object from model_id
Args:
model_id: Path for the bigdl-llm transformers low-bit model folder.
model_kwargs: Keyword arguments to pass to the model and tokenizer.
kwargs: Extra arguments to pass to the model and tokenizer.
Returns:
An object of BigdlLLM.
"""
logger.warning("BigdlLLM was deprecated. Please use IpexLLM instead.")
try:
from bigdl.llm.transformers import (
AutoModel,
AutoModelForCausalLM,
)
from transformers import AutoTokenizer, LlamaTokenizer
except ImportError:
raise ValueError(
"Could not import bigdl-llm or transformers. "
"Please install it with `pip install --pre --upgrade bigdl-llm[all]`."
)
_model_kwargs = model_kwargs or {}
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
except Exception:
tokenizer = LlamaTokenizer.from_pretrained(model_id, **_model_kwargs)
try:
model = AutoModelForCausalLM.load_low_bit(model_id, **_model_kwargs)
except Exception:
model = AutoModel.load_low_bit(model_id, **_model_kwargs)
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
return cls(
model_id=model_id,
model=model,
tokenizer=tokenizer,
model_kwargs=_model_kwargs,
**kwargs,
)
@property
def _llm_type(self) -> str:
return "bigdl-llm"