langchain/libs/community/langchain_community/llms/baidu_qianfan_endpoint.py
ligang-super a662468dde
community[patch]: Fix the error of Baidu Qianfan not passing the stop parameter (#18666)
- [x] **PR title**: "community: fix baidu qianfan missing stop
parameter"
- [x] **PR message**:
- **Description: Baidu Qianfan lost the stop parameter when requesting
service due to extracting it from kwargs. This bug can cause the agent
to receive incorrect results

---------

Co-authored-by: ligang33 <ligang33@baidu.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 18:21:49 +00:00

238 lines
7.5 KiB
Python

from __future__ import annotations
import logging
from typing import (
Any,
AsyncIterator,
Dict,
Iterator,
List,
Optional,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
logger = logging.getLogger(__name__)
class QianfanLLMEndpoint(LLM):
"""Baidu Qianfan hosted open source or customized models.
To use, you should have the ``qianfan`` python package installed, and
the environment variable ``qianfan_ak`` and ``qianfan_sk`` set with
your API key and Secret Key.
ak, sk are required parameters which you could get from
https://cloud.baidu.com/product/wenxinworkshop
Example:
.. code-block:: python
from langchain_community.llms import QianfanLLMEndpoint
qianfan_model = QianfanLLMEndpoint(model="ERNIE-Bot",
endpoint="your_endpoint", qianfan_ak="your_ak", qianfan_sk="your_sk")
"""
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""init kwargs for qianfan client init, such as `query_per_second` which is
associated with qianfan resource object to limit QPS"""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""extra params for model invoke using with `do`."""
client: Any
qianfan_ak: Optional[str] = None
qianfan_sk: Optional[str] = None
streaming: Optional[bool] = False
"""Whether to stream the results or not."""
model: str = "ERNIE-Bot-turbo"
"""Model name.
you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
preset models are mapping to an endpoint.
`model` will be ignored if `endpoint` is set
"""
endpoint: Optional[str] = None
"""Endpoint of the Qianfan LLM, required if custom model used."""
request_timeout: Optional[int] = 60
"""request timeout for chat http requests"""
top_p: Optional[float] = 0.8
temperature: Optional[float] = 0.95
penalty_score: Optional[float] = 1
"""Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo.
In the case of other model, passing these params will not affect the result.
"""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
values["qianfan_ak"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"qianfan_ak",
"QIANFAN_AK",
default="",
)
)
values["qianfan_sk"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"qianfan_sk",
"QIANFAN_SK",
default="",
)
)
params = {
**values.get("init_kwargs", {}),
"model": values["model"],
}
if values["qianfan_ak"].get_secret_value() != "":
params["ak"] = values["qianfan_ak"].get_secret_value()
if values["qianfan_sk"].get_secret_value() != "":
params["sk"] = values["qianfan_sk"].get_secret_value()
if values["endpoint"] is not None and values["endpoint"] != "":
params["endpoint"] = values["endpoint"]
try:
import qianfan
values["client"] = qianfan.Completion(**params)
except ImportError:
raise ImportError(
"qianfan package not found, please install it with "
"`pip install qianfan`"
)
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
return {
**{"endpoint": self.endpoint, "model": self.model},
**super()._identifying_params,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "baidu-qianfan-endpoint"
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Qianfan API."""
normal_params = {
"model": self.model,
"endpoint": self.endpoint,
"stream": self.streaming,
"request_timeout": self.request_timeout,
"top_p": self.top_p,
"temperature": self.temperature,
"penalty_score": self.penalty_score,
}
return {**normal_params, **self.model_kwargs}
def _convert_prompt_msg_params(
self,
prompt: str,
**kwargs: Any,
) -> dict:
if "streaming" in kwargs:
kwargs["stream"] = kwargs.pop("streaming")
return {
**{"prompt": prompt, "model": self.model},
**self._default_params,
**kwargs,
}
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to an qianfan models endpoint for each generation with a prompt.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = qianfan_model("Tell me a joke.")
"""
if self.streaming:
completion = ""
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
completion += chunk.text
return completion
params = self._convert_prompt_msg_params(prompt, **kwargs)
params["stop"] = stop
response_payload = self.client.do(**params)
return response_payload["result"]
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
if self.streaming:
completion = ""
async for chunk in self._astream(prompt, stop, run_manager, **kwargs):
completion += chunk.text
return completion
params = self._convert_prompt_msg_params(prompt, **kwargs)
params["stop"] = stop
response_payload = await self.client.ado(**params)
return response_payload["result"]
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params = self._convert_prompt_msg_params(prompt, **{**kwargs, "stream": True})
params["stop"] = stop
for res in self.client.do(**params):
if res:
chunk = GenerationChunk(text=res["result"])
if run_manager:
run_manager.on_llm_new_token(chunk.text)
yield chunk
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
params = self._convert_prompt_msg_params(prompt, **{**kwargs, "stream": True})
params["stop"] = stop
async for res in await self.client.ado(**params):
if res:
chunk = GenerationChunk(text=res["result"])
if run_manager:
await run_manager.on_llm_new_token(chunk.text)
yield chunk