mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
152 lines
5.3 KiB
Python
152 lines
5.3 KiB
Python
import json
|
|
import logging
|
|
import os
|
|
import tempfile
|
|
import zipfile
|
|
from pathlib import Path
|
|
from typing import Iterator, List, Union
|
|
|
|
from langchain_core.chat_sessions import ChatSession
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
|
|
|
from langchain_community.chat_loaders.base import BaseChatLoader
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class TelegramChatLoader(BaseChatLoader):
|
|
"""Load `telegram` conversations to LangChain chat messages.
|
|
|
|
To export, use the Telegram Desktop app from
|
|
https://desktop.telegram.org/, select a conversation, click the three dots
|
|
in the top right corner, and select "Export chat history". Then select
|
|
"Machine-readable JSON" (preferred) to export. Note: the 'lite' versions of
|
|
the desktop app (like "Telegram for MacOS") do not support exporting chat
|
|
history.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path: Union[str, Path],
|
|
):
|
|
"""Initialize the TelegramChatLoader.
|
|
|
|
Args:
|
|
path (Union[str, Path]): Path to the exported Telegram chat zip,
|
|
directory, json, or HTML file.
|
|
"""
|
|
self.path = path if isinstance(path, str) else str(path)
|
|
|
|
def _load_single_chat_session_html(self, file_path: str) -> ChatSession:
|
|
"""Load a single chat session from an HTML file.
|
|
|
|
Args:
|
|
file_path (str): Path to the HTML file.
|
|
|
|
Returns:
|
|
ChatSession: The loaded chat session.
|
|
"""
|
|
try:
|
|
from bs4 import BeautifulSoup
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Please install the 'beautifulsoup4' package to load"
|
|
" Telegram HTML files. You can do this by running"
|
|
"'pip install beautifulsoup4' in your terminal."
|
|
)
|
|
with open(file_path, "r", encoding="utf-8") as file:
|
|
soup = BeautifulSoup(file, "html.parser")
|
|
|
|
results: List[Union[HumanMessage, AIMessage]] = []
|
|
previous_sender = None
|
|
for message in soup.select(".message.default"):
|
|
timestamp = message.select_one(".pull_right.date.details")["title"]
|
|
from_name_element = message.select_one(".from_name")
|
|
if from_name_element is None and previous_sender is None:
|
|
logger.debug("from_name not found in message")
|
|
continue
|
|
elif from_name_element is None:
|
|
from_name = previous_sender
|
|
else:
|
|
from_name = from_name_element.text.strip()
|
|
text = message.select_one(".text").text.strip()
|
|
results.append(
|
|
HumanMessage(
|
|
content=text,
|
|
additional_kwargs={
|
|
"sender": from_name,
|
|
"events": [{"message_time": timestamp}],
|
|
},
|
|
)
|
|
)
|
|
previous_sender = from_name
|
|
|
|
return ChatSession(messages=results)
|
|
|
|
def _load_single_chat_session_json(self, file_path: str) -> ChatSession:
|
|
"""Load a single chat session from a JSON file.
|
|
|
|
Args:
|
|
file_path (str): Path to the JSON file.
|
|
|
|
Returns:
|
|
ChatSession: The loaded chat session.
|
|
"""
|
|
with open(file_path, "r", encoding="utf-8") as file:
|
|
data = json.load(file)
|
|
|
|
messages = data.get("messages", [])
|
|
results: List[BaseMessage] = []
|
|
for message in messages:
|
|
text = message.get("text", "")
|
|
timestamp = message.get("date", "")
|
|
from_name = message.get("from", "")
|
|
|
|
results.append(
|
|
HumanMessage(
|
|
content=text,
|
|
additional_kwargs={
|
|
"sender": from_name,
|
|
"events": [{"message_time": timestamp}],
|
|
},
|
|
)
|
|
)
|
|
|
|
return ChatSession(messages=results)
|
|
|
|
def _iterate_files(self, path: str) -> Iterator[str]:
|
|
"""Iterate over files in a directory or zip file.
|
|
|
|
Args:
|
|
path (str): Path to the directory or zip file.
|
|
|
|
Yields:
|
|
str: Path to each file.
|
|
"""
|
|
if os.path.isfile(path) and path.endswith((".html", ".json")):
|
|
yield path
|
|
elif os.path.isdir(path):
|
|
for root, _, files in os.walk(path):
|
|
for file in files:
|
|
if file.endswith((".html", ".json")):
|
|
yield os.path.join(root, file)
|
|
elif zipfile.is_zipfile(path):
|
|
with zipfile.ZipFile(path) as zip_file:
|
|
for file in zip_file.namelist():
|
|
if file.endswith((".html", ".json")):
|
|
with tempfile.TemporaryDirectory() as temp_dir:
|
|
yield zip_file.extract(file, path=temp_dir)
|
|
|
|
def lazy_load(self) -> Iterator[ChatSession]:
|
|
"""Lazy load the messages from the chat file and yield them
|
|
in as chat sessions.
|
|
|
|
Yields:
|
|
ChatSession: The loaded chat session.
|
|
"""
|
|
for file_path in self._iterate_files(self.path):
|
|
if file_path.endswith(".html"):
|
|
yield self._load_single_chat_session_html(file_path)
|
|
elif file_path.endswith(".json"):
|
|
yield self._load_single_chat_session_json(file_path)
|