langchain/docs/modules/llms/integrations/deepinfra_example.ipynb
Iskren Ivov Chernev 8e3cd3e0dd
Add DeepInfra LLM support (#1232)
DeepInfra is an Inference-as-a-Service provider. Add a simple wrapper
using HTTPS requests.
2023-02-23 07:37:15 -08:00

142 lines
2.9 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# DeepInfra LLM Example\n",
"This notebook goes over how to use Langchain with [DeepInfra](https://deepinfra.com)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from langchain.llms import DeepInfra\n",
"from langchain import PromptTemplate, LLMChain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the Environment API Key\n",
"Make sure to get your API key from DeepInfra. You are given a 1 hour free of serverless GPU compute to test different models.\n",
"You can print your token with `deepctl auth token`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"DEEPINFRA_API_TOKEN\"] = \"YOUR_KEY_HERE\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the DeepInfra instance\n",
"Make sure to deploy your model first via `deepctl deploy create -m google/flat-t5-xl` (for example)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = DeepInfra(model_id=\"DEPLOYED MODEL ID\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Prompt Template\n",
"We will create a prompt template for Question and Answer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initiate the LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run the LLMChain\n",
"Provide a question and run the LLMChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What NFL team won the Super Bowl in 2015?\"\n",
"\n",
"llm_chain.run(question)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.12 ('palm')",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.9.12"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}