mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
5fd1e67808
Changes: - ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type" parameter now - LLM integration packages add "type" to all the above - Tool supports ToolCall inputs that have "type" specified - Tool outputs ToolMessage when a ToolCall is passed as input - Tools can separately specify ToolMessage.content and ToolMessage.raw_output - Tools emit events for validation errors (using on_tool_error and on_tool_end) Example: ```python @tool("structured_api", response_format="content_and_raw_output") def _mock_structured_tool_with_raw_output( arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> Tuple[str, dict]: """A Structured Tool""" return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3} def test_tool_call_input_tool_message_with_raw_output() -> None: tool_call: Dict = { "name": "structured_api", "args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}}, "id": "123", "type": "tool_call", } expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123") tool = _mock_structured_tool_with_raw_output actual = tool.invoke(tool_call) assert actual == expected tool_call.pop("type") with pytest.raises(ValidationError): tool.invoke(tool_call) actual_content = tool.invoke(tool_call["args"]) assert actual_content == expected.content ``` --------- Co-authored-by: Erick Friis <erick@langchain.dev>
88 lines
3.2 KiB
Python
88 lines
3.2 KiB
Python
from typing import Any, List, Optional, Type, Union, cast
|
|
|
|
from langchain_core.messages import AIMessage, ToolCall
|
|
from langchain_core.messages.tool import tool_call
|
|
from langchain_core.output_parsers import BaseGenerationOutputParser
|
|
from langchain_core.outputs import ChatGeneration, Generation
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
|
|
class ToolsOutputParser(BaseGenerationOutputParser):
|
|
"""Output parser for tool calls."""
|
|
|
|
first_tool_only: bool = False
|
|
"""Whether to return only the first tool call."""
|
|
args_only: bool = False
|
|
"""Whether to return only the arguments of the tool calls."""
|
|
pydantic_schemas: Optional[List[Type[BaseModel]]] = None
|
|
"""Pydantic schemas to parse tool calls into."""
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
|
|
"""Parse a list of candidate model Generations into a specific format.
|
|
|
|
Args:
|
|
result: A list of Generations to be parsed. The Generations are assumed
|
|
to be different candidate outputs for a single model input.
|
|
|
|
Returns:
|
|
Structured output.
|
|
"""
|
|
if not result or not isinstance(result[0], ChatGeneration):
|
|
return None if self.first_tool_only else []
|
|
message = cast(AIMessage, result[0].message)
|
|
tool_calls: List = [
|
|
dict(tc) for tc in _extract_tool_calls_from_message(message)
|
|
]
|
|
if isinstance(message.content, list):
|
|
# Map tool call id to index
|
|
id_to_index = {
|
|
block["id"]: i
|
|
for i, block in enumerate(message.content)
|
|
if isinstance(block, dict) and block["type"] == "tool_use"
|
|
}
|
|
tool_calls = [{**tc, "index": id_to_index[tc["id"]]} for tc in tool_calls]
|
|
if self.pydantic_schemas:
|
|
tool_calls = [self._pydantic_parse(tc) for tc in tool_calls]
|
|
elif self.args_only:
|
|
tool_calls = [tc["args"] for tc in tool_calls]
|
|
else:
|
|
pass
|
|
|
|
if self.first_tool_only:
|
|
return tool_calls[0] if tool_calls else None
|
|
else:
|
|
return [tool_call for tool_call in tool_calls]
|
|
|
|
def _pydantic_parse(self, tool_call: dict) -> BaseModel:
|
|
cls_ = {schema.__name__: schema for schema in self.pydantic_schemas or []}[
|
|
tool_call["name"]
|
|
]
|
|
return cls_(**tool_call["args"])
|
|
|
|
|
|
def _extract_tool_calls_from_message(message: AIMessage) -> List[ToolCall]:
|
|
"""Extract tool calls from a list of content blocks."""
|
|
if message.tool_calls:
|
|
return message.tool_calls
|
|
return extract_tool_calls(message.content)
|
|
|
|
|
|
def extract_tool_calls(content: Union[str, List[Union[str, dict]]]) -> List[ToolCall]:
|
|
"""Extract tool calls from a list of content blocks."""
|
|
if isinstance(content, list):
|
|
tool_calls = []
|
|
for block in content:
|
|
if isinstance(block, str):
|
|
continue
|
|
if block["type"] != "tool_use":
|
|
continue
|
|
tool_calls.append(
|
|
tool_call(name=block["name"], args=block["input"], id=block["id"])
|
|
)
|
|
return tool_calls
|
|
else:
|
|
return []
|