langchain/libs/experimental/langchain_experimental/llms/lmformatenforcer_decoder.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

85 lines
2.8 KiB
Python

"""Experimental implementation of lm-format-enforcer wrapped LLM."""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, List, Optional
from langchain.schema import LLMResult
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_experimental.pydantic_v1 import Field
if TYPE_CHECKING:
import lmformatenforcer
def import_lmformatenforcer() -> lmformatenforcer:
"""Lazily import of the lmformatenforcer package."""
try:
import lmformatenforcer
except ImportError:
raise ImportError(
"Could not import lmformatenforcer python package. "
"Please install it with `pip install lm-format-enforcer`."
)
return lmformatenforcer
class LMFormatEnforcer(HuggingFacePipeline):
"""LMFormatEnforcer wrapped LLM using HuggingFace Pipeline API.
This pipeline is experimental and not yet stable.
"""
json_schema: Optional[dict] = Field(
description="The JSON Schema to complete.", default=None
)
regex: Optional[str] = Field(
description="The regular expression to complete.", default=None
)
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
lmformatenforcer = import_lmformatenforcer()
import lmformatenforcer.integrations.transformers as hf_integration
# We integrate lmformatenforcer by adding a prefix_allowed_tokens_fn.
# It has to be done on each call, because the prefix function is stateful.
if "prefix_allowed_tokens_fn" in self.pipeline._forward_params:
raise ValueError(
"prefix_allowed_tokens_fn param is forbidden with LMFormatEnforcer."
)
has_json_schema = self.json_schema is not None
has_regex = self.regex is not None
if has_json_schema == has_regex:
raise ValueError(
"You must specify exactly one of json_schema or a regex, but not both."
)
if has_json_schema:
parser = lmformatenforcer.JsonSchemaParser(self.json_schema)
else:
parser = lmformatenforcer.RegexParser(self.regex)
prefix_function = hf_integration.build_transformers_prefix_allowed_tokens_fn(
self.pipeline.tokenizer, parser
)
self.pipeline._forward_params["prefix_allowed_tokens_fn"] = prefix_function
result = super()._generate(
prompts,
stop=stop,
run_manager=run_manager,
**kwargs,
)
del self.pipeline._forward_params["prefix_allowed_tokens_fn"]
return result