mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
a0c2281540
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
105 lines
3.6 KiB
Python
105 lines
3.6 KiB
Python
"""Question answering over a graph."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain_core.callbacks.manager import CallbackManagerForChainRun
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.prompts import BasePromptTemplate
|
|
from langchain_core.pydantic_v1 import Field
|
|
|
|
from langchain_community.chains.graph_qa.prompts import (
|
|
ENTITY_EXTRACTION_PROMPT,
|
|
GRAPH_QA_PROMPT,
|
|
)
|
|
from langchain_community.graphs.networkx_graph import NetworkxEntityGraph, get_entities
|
|
|
|
|
|
class GraphQAChain(Chain):
|
|
"""Chain for question-answering against a graph.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
graph: NetworkxEntityGraph = Field(exclude=True)
|
|
entity_extraction_chain: LLMChain
|
|
qa_chain: LLMChain
|
|
input_key: str = "query" #: :meta private:
|
|
output_key: str = "result" #: :meta private:
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Output keys.
|
|
|
|
:meta private:
|
|
"""
|
|
_output_keys = [self.output_key]
|
|
return _output_keys
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
qa_prompt: BasePromptTemplate = GRAPH_QA_PROMPT,
|
|
entity_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT,
|
|
**kwargs: Any,
|
|
) -> GraphQAChain:
|
|
"""Initialize from LLM."""
|
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
|
entity_chain = LLMChain(llm=llm, prompt=entity_prompt)
|
|
|
|
return cls(
|
|
qa_chain=qa_chain,
|
|
entity_extraction_chain=entity_chain,
|
|
**kwargs,
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, str]:
|
|
"""Extract entities, look up info and answer question."""
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
question = inputs[self.input_key]
|
|
|
|
entity_string = self.entity_extraction_chain.run(question)
|
|
|
|
_run_manager.on_text("Entities Extracted:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
entity_string, color="green", end="\n", verbose=self.verbose
|
|
)
|
|
entities = get_entities(entity_string)
|
|
context = ""
|
|
all_triplets = []
|
|
for entity in entities:
|
|
all_triplets.extend(self.graph.get_entity_knowledge(entity))
|
|
context = "\n".join(all_triplets)
|
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(context, color="green", end="\n", verbose=self.verbose)
|
|
result = self.qa_chain(
|
|
{"question": question, "context": context},
|
|
callbacks=_run_manager.get_child(),
|
|
)
|
|
return {self.output_key: result[self.qa_chain.output_key]}
|