mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
a0c2281540
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
243 lines
8.2 KiB
Python
243 lines
8.2 KiB
Python
"""Question answering over a graph."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import re
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain_core.callbacks import CallbackManagerForChainRun
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.prompts import BasePromptTemplate
|
|
from langchain_core.pydantic_v1 import Field
|
|
|
|
from langchain_community.chains.graph_qa.prompts import (
|
|
AQL_FIX_PROMPT,
|
|
AQL_GENERATION_PROMPT,
|
|
AQL_QA_PROMPT,
|
|
)
|
|
from langchain_community.graphs.arangodb_graph import ArangoGraph
|
|
|
|
|
|
class ArangoGraphQAChain(Chain):
|
|
"""Chain for question-answering against a graph by generating AQL statements.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
graph: ArangoGraph = Field(exclude=True)
|
|
aql_generation_chain: LLMChain
|
|
aql_fix_chain: LLMChain
|
|
qa_chain: LLMChain
|
|
input_key: str = "query" #: :meta private:
|
|
output_key: str = "result" #: :meta private:
|
|
|
|
# Specifies the maximum number of AQL Query Results to return
|
|
top_k: int = 10
|
|
|
|
# Specifies the set of AQL Query Examples that promote few-shot-learning
|
|
aql_examples: str = ""
|
|
|
|
# Specify whether to return the AQL Query in the output dictionary
|
|
return_aql_query: bool = False
|
|
|
|
# Specify whether to return the AQL JSON Result in the output dictionary
|
|
return_aql_result: bool = False
|
|
|
|
# Specify the maximum amount of AQL Generation attempts that should be made
|
|
max_aql_generation_attempts: int = 3
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
return [self.output_key]
|
|
|
|
@property
|
|
def _chain_type(self) -> str:
|
|
return "graph_aql_chain"
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
*,
|
|
qa_prompt: BasePromptTemplate = AQL_QA_PROMPT,
|
|
aql_generation_prompt: BasePromptTemplate = AQL_GENERATION_PROMPT,
|
|
aql_fix_prompt: BasePromptTemplate = AQL_FIX_PROMPT,
|
|
**kwargs: Any,
|
|
) -> ArangoGraphQAChain:
|
|
"""Initialize from LLM."""
|
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
|
aql_generation_chain = LLMChain(llm=llm, prompt=aql_generation_prompt)
|
|
aql_fix_chain = LLMChain(llm=llm, prompt=aql_fix_prompt)
|
|
|
|
return cls(
|
|
qa_chain=qa_chain,
|
|
aql_generation_chain=aql_generation_chain,
|
|
aql_fix_chain=aql_fix_chain,
|
|
**kwargs,
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Generate an AQL statement from user input, use it retrieve a response
|
|
from an ArangoDB Database instance, and respond to the user input
|
|
in natural language.
|
|
|
|
Users can modify the following ArangoGraphQAChain Class Variables:
|
|
|
|
:var top_k: The maximum number of AQL Query Results to return
|
|
:type top_k: int
|
|
|
|
:var aql_examples: A set of AQL Query Examples that are passed to
|
|
the AQL Generation Prompt Template to promote few-shot-learning.
|
|
Defaults to an empty string.
|
|
:type aql_examples: str
|
|
|
|
:var return_aql_query: Whether to return the AQL Query in the
|
|
output dictionary. Defaults to False.
|
|
:type return_aql_query: bool
|
|
|
|
:var return_aql_result: Whether to return the AQL Query in the
|
|
output dictionary. Defaults to False
|
|
:type return_aql_result: bool
|
|
|
|
:var max_aql_generation_attempts: The maximum amount of AQL
|
|
Generation attempts to be made prior to raising the last
|
|
AQL Query Execution Error. Defaults to 3.
|
|
:type max_aql_generation_attempts: int
|
|
"""
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
callbacks = _run_manager.get_child()
|
|
user_input = inputs[self.input_key]
|
|
|
|
#########################
|
|
# Generate AQL Query #
|
|
aql_generation_output = self.aql_generation_chain.run(
|
|
{
|
|
"adb_schema": self.graph.schema,
|
|
"aql_examples": self.aql_examples,
|
|
"user_input": user_input,
|
|
},
|
|
callbacks=callbacks,
|
|
)
|
|
#########################
|
|
|
|
aql_query = ""
|
|
aql_error = ""
|
|
aql_result = None
|
|
aql_generation_attempt = 1
|
|
|
|
while (
|
|
aql_result is None
|
|
and aql_generation_attempt < self.max_aql_generation_attempts + 1
|
|
):
|
|
#####################
|
|
# Extract AQL Query #
|
|
pattern = r"```(?i:aql)?(.*?)```"
|
|
matches = re.findall(pattern, aql_generation_output, re.DOTALL)
|
|
if not matches:
|
|
_run_manager.on_text(
|
|
"Invalid Response: ", end="\n", verbose=self.verbose
|
|
)
|
|
_run_manager.on_text(
|
|
aql_generation_output, color="red", end="\n", verbose=self.verbose
|
|
)
|
|
raise ValueError(f"Response is Invalid: {aql_generation_output}")
|
|
|
|
aql_query = matches[0]
|
|
#####################
|
|
|
|
_run_manager.on_text(
|
|
f"AQL Query ({aql_generation_attempt}):", verbose=self.verbose
|
|
)
|
|
_run_manager.on_text(
|
|
aql_query, color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
#####################
|
|
# Execute AQL Query #
|
|
from arango import AQLQueryExecuteError
|
|
|
|
try:
|
|
aql_result = self.graph.query(aql_query, self.top_k)
|
|
except AQLQueryExecuteError as e:
|
|
aql_error = e.error_message
|
|
|
|
_run_manager.on_text(
|
|
"AQL Query Execution Error: ", end="\n", verbose=self.verbose
|
|
)
|
|
_run_manager.on_text(
|
|
aql_error, color="yellow", end="\n\n", verbose=self.verbose
|
|
)
|
|
|
|
########################
|
|
# Retry AQL Generation #
|
|
aql_generation_output = self.aql_fix_chain.run(
|
|
{
|
|
"adb_schema": self.graph.schema,
|
|
"aql_query": aql_query,
|
|
"aql_error": aql_error,
|
|
},
|
|
callbacks=callbacks,
|
|
)
|
|
########################
|
|
|
|
#####################
|
|
|
|
aql_generation_attempt += 1
|
|
|
|
if aql_result is None:
|
|
m = f"""
|
|
Maximum amount of AQL Query Generation attempts reached.
|
|
Unable to execute the AQL Query due to the following error:
|
|
{aql_error}
|
|
"""
|
|
raise ValueError(m)
|
|
|
|
_run_manager.on_text("AQL Result:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
str(aql_result), color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
########################
|
|
# Interpret AQL Result #
|
|
result = self.qa_chain(
|
|
{
|
|
"adb_schema": self.graph.schema,
|
|
"user_input": user_input,
|
|
"aql_query": aql_query,
|
|
"aql_result": aql_result,
|
|
},
|
|
callbacks=callbacks,
|
|
)
|
|
########################
|
|
|
|
# Return results #
|
|
result = {self.output_key: result[self.qa_chain.output_key]}
|
|
|
|
if self.return_aql_query:
|
|
result["aql_query"] = aql_query
|
|
|
|
if self.return_aql_result:
|
|
result["aql_result"] = aql_result
|
|
|
|
return result
|