mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
987099cfcd
Added missed docstrings. Formatted docstrings to the consistent form. --------- Co-authored-by: ccurme <chester.curme@gmail.com>
95 lines
3.4 KiB
Python
95 lines
3.4 KiB
Python
"""Power BI agent."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
|
|
|
from langchain_core.callbacks import BaseCallbackManager
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
|
|
from langchain_community.agent_toolkits.powerbi.prompt import (
|
|
POWERBI_PREFIX,
|
|
POWERBI_SUFFIX,
|
|
)
|
|
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
|
|
from langchain_community.utilities.powerbi import PowerBIDataset
|
|
|
|
if TYPE_CHECKING:
|
|
from langchain.agents import AgentExecutor
|
|
|
|
|
|
def create_pbi_agent(
|
|
llm: BaseLanguageModel,
|
|
toolkit: Optional[PowerBIToolkit] = None,
|
|
powerbi: Optional[PowerBIDataset] = None,
|
|
callback_manager: Optional[BaseCallbackManager] = None,
|
|
prefix: str = POWERBI_PREFIX,
|
|
suffix: str = POWERBI_SUFFIX,
|
|
format_instructions: Optional[str] = None,
|
|
examples: Optional[str] = None,
|
|
input_variables: Optional[List[str]] = None,
|
|
top_k: int = 10,
|
|
verbose: bool = False,
|
|
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> AgentExecutor:
|
|
"""Construct a Power BI agent from an LLM and tools.
|
|
|
|
Args:
|
|
llm: The language model to use.
|
|
toolkit: Optional. The Power BI toolkit. Default is None.
|
|
powerbi: Optional. The Power BI dataset. Default is None.
|
|
callback_manager: Optional. The callback manager. Default is None.
|
|
prefix: Optional. The prefix for the prompt. Default is POWERBI_PREFIX.
|
|
suffix: Optional. The suffix for the prompt. Default is POWERBI_SUFFIX.
|
|
format_instructions: Optional. The format instructions for the prompt.
|
|
Default is None.
|
|
examples: Optional. The examples for the prompt. Default is None.
|
|
input_variables: Optional. The input variables for the prompt. Default is None.
|
|
top_k: Optional. The top k for the prompt. Default is 10.
|
|
verbose: Optional. Whether to print verbose output. Default is False.
|
|
agent_executor_kwargs: Optional. The agent executor kwargs. Default is None.
|
|
kwargs: Any. Additional keyword arguments.
|
|
|
|
Returns:
|
|
The agent executor.
|
|
"""
|
|
from langchain.agents import AgentExecutor
|
|
from langchain.agents.mrkl.base import ZeroShotAgent
|
|
from langchain.chains.llm import LLMChain
|
|
|
|
if toolkit is None:
|
|
if powerbi is None:
|
|
raise ValueError("Must provide either a toolkit or powerbi dataset")
|
|
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
|
|
tools = toolkit.get_tools()
|
|
tables = powerbi.table_names if powerbi else toolkit.powerbi.table_names
|
|
prompt_params = (
|
|
{"format_instructions": format_instructions}
|
|
if format_instructions is not None
|
|
else {}
|
|
)
|
|
agent = ZeroShotAgent(
|
|
llm_chain=LLMChain(
|
|
llm=llm,
|
|
prompt=ZeroShotAgent.create_prompt(
|
|
tools,
|
|
prefix=prefix.format(top_k=top_k).format(tables=tables),
|
|
suffix=suffix,
|
|
input_variables=input_variables,
|
|
**prompt_params,
|
|
),
|
|
callback_manager=callback_manager,
|
|
verbose=verbose,
|
|
),
|
|
allowed_tools=[tool.name for tool in tools],
|
|
**kwargs,
|
|
)
|
|
return AgentExecutor.from_agent_and_tools(
|
|
agent=agent,
|
|
tools=tools,
|
|
callback_manager=callback_manager,
|
|
verbose=verbose,
|
|
**(agent_executor_kwargs or {}),
|
|
)
|